
- •Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •5. Схема построения эконометрических моделей (на примере эконометрической модели Оукена).
- •6. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •7. Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •8. Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •9. Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль t крит уровня и её расчёт в Excel.
- •10. Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •11. Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль f крит уровня и её расчёт в Excel.
- •12. Случайный вектор и его основные количественные характеристики. Случайный вектор левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке.
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •Моделирование сезонной составляющей при помощи фиктивных переменных.
- •Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •Порядок проверки статистических гипотез (на примере гипотезы об адекватности лммр).
- •Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •Основные характеристики временного ряда.
- •Стационарный временной ряд. Белый шум.
- •Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса – предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка).
- •Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга).
- •Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым методом наименьших квадратов (2мнк) – на примере простейшей макромодели Кейнса.
- •Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Рассмотрим
структурную форму модели СЛОУ и
трансформируем ее к приведенной форме,
т.е. выразим вектор
через
вектор
Символом
обозначим матрицу коэффициентов
приведенной формы модели.Эта матрица
следующим образом зависит от
и
(
)
.
Добавим, что матрица М может быть оценена по результатам наблюдений эндогенных и предопределенных переменных данной модели, например, методом наим.кв-ов.
Теорема Слуцкого
Пусть
матрица состоятельных МНК-оценок коэф-ов
приведенной формы модели СЛОУ, т.е.
.
Пусть
любая рациональная вектор-функция,
такая что значение
конечно. Тогда
.
Запишем
с учетом отмеченного выражения матрицы
,
линейного ограничения на параметры
и условия нормализации
систему
уравнений, которой удовлетворяет вектор
искомых параметров
исследуемого поведенческого уравнения
I-
единичная матрицца
Рассматривая
эту систему, констатируем, что искомый
вектор коэф-ов
является решением этой системы и,
следовательно,
рациональная функция матрицы
.
Согласно
теореме Слуцкого, оценка вектора
,
вычисленная в процессе решения системы
(1)
оказывается состоятельной оценкой
вектора
Оценки
- оценки поведенческого уравнения
косвенным методом наименьших квадратов.
КМНК для м-ли Кейнса
Структурная форма
Приведенная форма
Пусть
в результате оценивания МНК приведенной
формы модели получились оценки параметров
и
(
.
Подставляя эти оценки в наше уравнение
и разрешая эти уравнения относительно
и
,
получим оценки косвенным м-ом наименьших
квадратов, т.е.
и
.
Статистические данные для построения модели Оукена экономики России
Год |
Уровень безработицы Ut %
|
Изменение уровня безработицы xt % |
Темп прироста реального ВВП yt % |
2001 |
8,8 |
-1,0 |
5,1 |
2002 |
8,5 |
-0,3 |
4,7 |
2003 |
7,8 |
-0,7 |
7,3 |
2004 |
7,9 |
0,1 |
7,2 |
2005 |
7,1 |
-0,8 |
6,4 |
2006 |
6,7 |
-0,4 |
8,2 |
2007 |
5,7 |
-1,0 |
8,5 |
2008 |
7,0 |
1,3 |
5,2 |
2009 |
8,4 |
1,4 |
-7,8 |
2010 |
7,5 |
-0,9 |
4,3 |