
- •Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •5. Схема построения эконометрических моделей (на примере эконометрической модели Оукена).
- •6. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •7. Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •8. Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •9. Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль t крит уровня и её расчёт в Excel.
- •10. Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •11. Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль f крит уровня и её расчёт в Excel.
- •12. Случайный вектор и его основные количественные характеристики. Случайный вектор левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке.
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •Моделирование сезонной составляющей при помощи фиктивных переменных.
- •Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •Порядок проверки статистических гипотез (на примере гипотезы об адекватности лммр).
- •Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •Основные характеристики временного ряда.
- •Стационарный временной ряд. Белый шум.
- •Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса – предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка).
- •Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга).
- •Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым методом наименьших квадратов (2мнк) – на примере простейшей макромодели Кейнса.
- •Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
М
одель
AR(1) имеет следующую спецификацию:
t,
t-1
уравнение
модели запишем в идее:
Задаемся на промежутке [0,1) набором пробных значений
по правилу
(1)
где N-некоторое натуральное число
При каждом значении (1) составляем систему уравнений наблюдений
И
вычислим на основании этой системы
МНК-оценки
,
Выбираем из множества пробных значений (1) такую величину
, при которой имеет место экстремум
.
Выбранные величины и будут искомыми оценками параметров модели AR(1)
Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
Мультиколлинеарность- ситуация, в которой в уравнениях наблюдений столбцы матрицы X становятся практически линейно зависимыми, что входит в противоречии с исходной предпосылкой теоремы Гаусса-Маркова. В ситуации мультиколлинеарности оценки параметров линейной регрессионной модели становятся ненадежными.
В условиях мультиколлинеарности текущий уровень ряда, как правило, может быть во многом объяснен предыдущими значениями
xt≈c0+c1xt-1+c2xt-2 (1)
Если (1) превращается в точное равенство, возникает ситуация совершенной мультиколлинеарности.
Симптомы:
резкое изменение значений оценок модели при незначительной вариации состава обучающей выборки;
наличие в оцененной модели небольших по модулю значений
при достаточно высоком значении коэф-та детерминации;
большое значение коэф-та детерминации между каждой объясняющей пер-ой линейной модели и ее остальными объясняющими пер-ми.
Отбор объясняющих переменных методом дополнительной регрессии
2 принципа такого отбора:
- в модели следует оставлять только значащие факторы, используя при определении значащих факторов T-тест
- при отборе фактора хj в модель строится для этого фактора дополнительная регрессия
xjt=b0+b1x1,t+…+bj-1xj-1,t+bj+1xj+1,t+…+vj,t и вычисляется Rj2
в модели сохраняются те факторы, у которых коэффициенты детерминации в дополнительной регрессии наименьшие, а коэффициента корреляции стремятся к максимуму
Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса – предложения блага).
В
общем случае экономическая модель может
включать в себя несколько текущих
эндогенных переменных. Линейная
экономическая модель в общем случае
имеет спецификацию
(1).
Пример
– модель спроса и предложения на
конкурентном рынке:
(2)
Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) объясняющей эндогенной переменной в обоих уравнениях является цена р.
Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы.
Рассмотрим
первую проблему на примере модели (2).
Можно ли определить параметры а0, а1, b0,
b1
поведенческих уравнений? Построим
графики спроса и предложения.
Для
наблюдений в рамках модели доступна
равновесная цена
и
уровень спроса и предложения по
равновесной цене
.Знание
точки Е не позволяет определить ни
параметры кривой спроса, ни предложения.
Поясним эту мысль, составив приведенную форму (случайные остатки пока опустим)
(3).
Рассматривая (3), констатируем, что эта
форма состоит из двух уравнений с
четырьмя искомыми параметрами. Определить
их однозначно нельзя. В этом и заключается
неидентифицируемость обоих уравнений
модели (2). Например, если (3) разрешить
относительно а1 и b1
:
,
то задаваясь любыми подходящими а0, b0
получим то или иное решение уравнений
(3).
Опр: Поведенческое уравнение модели (1) является идентифицируемым, если по известным коэффициентам приведенной формы модели можно определить коэффициенты данного поведенческого уравнения.