Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekz_voprosy_po_ekonometrike_dlya_PM3_2011-2012...doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
9.6 Mб
Скачать
  1. Модель ar(p) и её идентификация.

Авторегрессия первого порядка:

, ,имеет смысл коэффициента корреляции уровней ряда в соседние моменты времени.

Автокорреляционная функция имеет уровни ρuu(i,j)=ρ|i-j|τ и экспоненциально убывает с ростом лага τ

При ρ=0 ряд превращается в WN. Если ρ=1, то ряд становится нестационарным рядом, называющимся случайным блужданием.

Теорема позволяющая идентифицировать временной ряд AR(1):

Если utϵAR(1), то его частная автокорреляционная функция тождественно равна 0, при τ>1

ρuu(p)(τ)=

Модель авторегрессии порядка р задается поведенческим уравнением:

ut1ut-1+ β2ut-2+…+ βput-pt

Для модели AR(p) частная автокорреляционная функция авна 0 при .

  1. Модель ma(q) и её идентификация.

Модель первого порядка:

Теорема. Если utϵMA(1) то

  1. Ряд порожденный этой моделью является стационарным

  2. E(ut)=0, Ϭu2ξ2(1+γ2)

  3. Автокорреляционная функция ряда MA(1) имеет уравнение:

ρuu(τ)=

Рекурсивное уравнение модели:

ut1ξt-1+ γ 2ξt-2+…+ γ pξt-pt

Теорема. Если utϵMA(q) то ρuu(τ)=0 при τ>q.

  1. Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.

Пусть уровни ряда ut STS наблюдались в моменты времени t=1,2,…,n. Результаты этих наблюдений обозначим символами u1, u2,…,un. Расположим эти результаты в обратном порядке и будем интерпретировать такой набор как случайный вектор , т.е.

T=(un,..,u2,u1) (1).

Задача прогнозирования заключается в построении правила прогноза будущего уровня n наблюдаемого ряда по его известным уровням (1), следовательно n есть значение некоторой функции f наблюдаемых уровней (1):

n=f (u1, u2,…,un). (2)

Прогноз будет являться оптимальным, если он удовлетворяет требованиям, предъявляемым к статистическим процедурам: (3)

Прогнозный алгоритм оптимальный в множестве всех функций аргумента- это условное математическое ожидание :

u1, u2,…,un). (4)

Пусть временной ряд ut STS является гауссовским, т .е. его уровни образуют нормально распределенный случайный вектор

T=( u1, u2,…,un,…,ut+τ,…,uN). (5)

Вектор наблюдений (1) роль объясняющего вектора , поэтому

(6)

Здесь Будущий уровень ряда nинтерпретируем как вектор . Так что .

Ковариационная матрица . Находим матрицу = T.

Тогда оптимальный алгоритм прогнозирования уровней гауссовского стационарного временного ряда принимает вид

u1, u2,…,un)= T (7)

Алгоритм (7) является линейным. Действительно, проведя перегруппировку членов в правой части равенства (7), увидим, что

a0+a1un+a2un-1+…+anu1.

  1. Модели нестационарных временных рядов. Идентификация модели тренда.

  1. Аддитивная модель временного ряда имеет следующую спецификацию

(1)

Алгоритм выбора тренда T(t) в модели (1):

  1. Наблюдаем уровни ряда yt, для которого создаем модель (1)

  2. Из наблюдаемых уровней отбираем уровни базовых периодов. Пусть отобрано m уровней базовых периодов: y1, y2,…,ym. (2)

  3. Вычисляем по уровням (2) при τ=1,2,…,m-1 разности Δyτ=yτ+1-yτ

  4. Задаваясь значениями τ=1,2,… и Δτ=1, вычисляем значения индикаторов функции тренда:

I1(τ)=Δ(2)yτ=Δyτ+1-Δyτ

I2(τ)= Δ(3)yτ=ΔI1(τ)=I1(τ+1)-I1(τ)

I3(τ)=Δ( )=

I4(τ)=Δ(

I5(τ)=Δ(τΔyτ)=(τ+1)Δyτ+1-τΔyτ

I6(τ)=Δ(2)(

  1. Отмечаем те индикаторы, значения которых в ответ на изменение переменной τ, колеблются вокруг нуля. По данному индикатору выбираем соответствующую функцию тренда T(t) (наиболее простую):

- для I1- линейная

-для I2-парабола второго порядка

- для I3-показательная

- для I4-степенная

- для I5-логарифмическая

- для I6- логистическая

  1. Модель броуновского движения

Временной ряд yt обладает следующими характеристиками

my(t)=y0, σy2ξ2t, σyy(I,j)= σξ2min(I,j)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]