Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekz_voprosy_po_ekonometrike_dlya_PM3_2011-2012...doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
9.6 Mб
Скачать
  1. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .

(Внимание: нумерация формул идёт не по порядку)

Так как вектор случайных остатков имеет нормальный закон распределения, то и нормально распределённым будет случайный вектор . (8.86) Компоненты этого вектора имеют количественные характеристики

Образуем из этих компонент независимые стандартные нормально распределённые случайные переменные (8.90)

Рассмотрим величину ( - это эффективная линейная несмещенная оценка, обладающая свойством наименьших квадратов), она зависит от выборки , а значит, является случайной переменной.

Начнем с оценки вектора случайных остатков (8,79)

Представим этот вектор как выход линейного преобразования вектора . Для этого подставим в правую часть 8,79 правую часть и приведем подобные члены:

Здесь приняли обозначение

Теперь, в правую часть предпоследнего равенства подставляем правую часть и, раскрывая скобки, получаем искомое преобразование:

(8,81)

В компактном виде получаем (8.81’)

С учетом 8,81 находим значение квадратичной формы ( )

(8.82)

С учётом (8.82) и (8.86) получим

(8.89)

С учётом (8.89) и (8.90) получим:

(8.91)

Это значит, что при нормально распределённом векторе случайных остатков в схеме Гаусса-Маркова квадратичная форма (8.91) является случайной переменной, распределённой (с точностью до множителя ) по закону хи-квадрат с количеством степеней свободы К+1. Ч учётом этого утверждения, находим, что (8.92)

В силу (8.92) оценка дисперсии единицы веса тоже имеет с точностью до множителя закон распределения хи-квадрат с количеством степеней свободы n-(k+1):

  1. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .

- стандартная ошибка (оценка среднего квадратического отклонения) компоненты . Докажем, что случайная переменная (8.107)

имеет закон распределения Стьюдента с количеством степеней свободы n-(k+1), т.е.

(8.108)

Доказательство.

Разделим числитель и знаменатель дроби (8.107) на константу .

Учитывая (из 30-го вопроса), получим:

(8.109)

Здесь символом обозначена стандартная нормально распределённая случайная переменная.

- дробь Стьюдента с n степенями свободы (7.47)

С учётом (7.47) и (8.109) получим представление (8.108)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]