- •Лекция №1 История создания
- •Квантовые переходы в веществе, процессы испускания и поглощения.
- •Структурная схема лазера, основные элементы
- •Оптические резонаторы
- •Резонаторы со сферическими отражателями.
- •Лекция №2
- •Призменные, угловые и сложные резонаторы
- •Методы описания процессов в лазерах
- •Вероятностный метод описания процессов в лазерах
- •Полуклассический метод расчета лазеров
- •5.1. Стационарный режим
- •Лекция №3
- •Модуляция добротности резонаторов
- •Лекция 6 Лазерные резонаторы Гауссов пучок в свободном пространстве
- •Матричный метод расчета лазерных резонаторов
- •Спектр лазерного резонатора
- •Астигматичный гауссов пучок, астигматичные оптические элементы, астигматичные резонаторы
- •Расчет резонаторов матричным методом. Резюме
- •Лучевые матрицы некоторых элементов
- •Лекция №7 Режим синхронизации мод
- •Синхронизация мод в лазерах
- •Нелинейно-оптические явления. Общая характеристика нло
- •Лекция №8 Классификация лазеров
- •Общие принципы создания инверсии.
- •Механизмы заселения уровней (механизмы возбуждения)
- •Системы оптической накачки
- •Лекция №9 Твердотельные лазеры: вопросы практической реализации оптической накачки, рабочие схемы лазеров
- •Лекция №10 Твердотельные лазеры: аморфные лазерные вещества
- •Жидкостные лазеры
- •Лекция №11 Жидкостные лазеры – на органических красителях (продолжение)
- •Перестройка длины волны генерации; селективные резонаторы
- •Жидкостные лазеры на неорганических жидкостях
- •Газовые лазеры
- •Основные типы газовых лазеров
- •Основные механизмы создания инверсии в газах
- •Лазеры на нейтральных атомах
- •Лекция №12 Лазеры на нейтральных атомах (продолжение)
- •Ионные лазеры
- •Молекулярные лазеры
- •Электроионизационный -лазер
- •Лекция №13 (Газовые лазеры. Электроионизационные лазеры ― продожение) Способы ионизации
- •Химические лазеры
- •Эксимерные лазеры
- •Плазменные лазеры (рекомбинационная накачка)
Лекция №11 Жидкостные лазеры – на органических красителях (продолжение)
Схема уровней и основные переходы
Молекула красителя имеет сложную структуру, включает в себя много атомов, характеризуется большим числом состояний, представляющих собой сложные комбинации электронных, колебательных и вращательных состояний. Поэтому невозможно изобразить в данном случае сколь-либо точную рабочую схему уровней. При рассмотрении механизма создания инверсии в лазере на красителе пользуются предельно упрощенной, в определенном смысле условной рабочей схемой, отражающей лишь некоторые принципиальные стороны картины квантовых переходов в молекуле красителя. Эта схема дана на рис. 11.1.
-
Рис. 11.1
толстые и тонкие горизонтальные прямые – соответственно колебательные и вращательные состояния молекулы
S0, S1 , S2 , T1 , T2 , -- электронные состояния молекулы
Прямые стрелки – оптические переходы, (двойная-лазерный), волнистые – неоптические.
При возбуждении происходит переход одного из электронов молекулы в более возбужденное состояние. Если спин этого электрона остается антипараллельным спину остальной части молекулы, то говорят о синглетных электронных состояниях (состояния S1 , S2, а также основное состояние So), если же при возбуждении спин электрона переворачивается и оказывается параллельным спину остальной части молекулы, то говорят о триплетных электронных состояниях (состояния T1 , T2 ). Синглет-триплетные переходы связаны с переворачиванием спина и менее вероятны чем синглет- синглетные или триплет- триплетные.
Перестройка длины волны генерации; селективные резонаторы
Как уже отмечалось, в лазерах на красителях возможна перестройка длины волны генерации. При этом может быть использована зависимость положения линии генерации красителя от концентрации молекул красителя в растворе, температуры раствора, коэффициентов отражения зеркал резонатора. Чаще всего для перестройки длины волны генерации применяют селективные резонаторы.
Селективный резонатор — это резонатор, внутри которого наряду с активной средой находится спектрально-селективный элемент. В качестве таких элементов используют спектральные светофильтры, интерферометры Фабри—Перо, дисперсионные призмы, дифракционные решетки.
-
Рис 11.2
1 — кювета с красителем, 2 — накачивающее излучение (от вспомогательного лазера), 3 — выходное излучение, 4 — выходное зеркало резонатора, 5 — призма, 6 — поворачивающееся относительно призмы отражающее зеркало.
На рис. 11.2 изображен лазер на красителе с плавной перестройкой длины волны генерации при помощи дисперсионной призмы. Здесь кювета ориентирована таким образом, чтобы перпендикуляр к ее стенке образовывал с направлением излучения красителя угол Брюстера αБр . В этом случае генерируемое излучение является линейно-поляризованным (вектор Е колеблется в плоскости рисунка) и практически отсутствуют потери на отражение излучения от стенок кюветы. Роль селективного элемента играет в данном случае призма. В зависимости от ориентации плоскости зеркала 6 относительно призмы реализуется генерация определенной длины волны. Поворачивая плоскость зеркала 6, можно плавно изменять длину волны генерации (в пределах ширины линии люминесценции данного красителя).
