
- •Д.В. Иоргачев
- •Д.В. Иоргачев
- •Isbn 5-88405-041-0 © Авторы, 2002 содержание
- •Глава 1. Краткий обзор по истории развития оптической связи …………………………………….6
- •Глава 2. Основные принципы действия волоконных световодов.
- •Глава 3. Оптические волокна и кабели. Классификация,
- •Глава 4. Основные положения по конструированию и особенности
- •Глава 5. Методы испытания волоконно-оптических кабелей ..........................................................139
- •5.3.1. Общие положения .........................................................................................................146
- •Глава 6. Строительство и монтаж волоконно-оптических линий связи.........................................168
- •Глава 7. Основы технической эксплуатации волоконно-оптических линий связи .....................205
- •Глава 1
- •Глава 2
- •2.1. Волны, частицы и электромагнитный спектр
- •2.2. Принцип действия волоконных световодов
- •2.3. Основные положения геометрической (лучевой) оптики
- •2.3.1. Основы геометрической оптики
- •2.3.2. Анализ лучевого распространения света в волоконных световодах
- •2.4. Основные положения волновой теории
- •2.4.1. Основные понятия
- •2.4.2. Взаимодействие оптической волны со средой
- •2.4.3. Волновые уравнения
- •2.4.4. Граничные условия
- •2 .4.5. Волновой анализ распространения мод
- •2.4.6. Глоговское группирование мод
- •2.5. Параметры оптических волокон
- •2 .5.1. Геометрические и оптические параметры оптических волокон
- •2.5.2. Параметры передачи оптических волокон
- •2.5.3. Механические параметры оптических волокон
- •Глава 3
- •3.1. Многомодовые и одномодовые оптические
- •3.2. Материалы оптических волокон из кварцевого стекла
- •3.3. Изготовление оптических волокон
- •3.3.1. Общие положения
- •3.3.2. Технология изготовления опорных кварцевых труб
- •3.3.3. Изготовление заготовок путем плавления стекла
- •3.3.4. Изготовление заготовки методом осаждения стекла из паровой фазы
- •3.3.5. Модифицированный метод химического парофазного осаждения (мсvd)
- •3.3.6. Плазменный метод химического парофазного осаждения (pcvd)
- •3.3.7. Метод внешнего парофазного осаждения (ovd)
- •3.3.8. Метод осевого парофазного осаждения (vаd)
- •Vad метод изготовления заготовок
- •3.3.9. Вытяжка оптического волокна
- •3.4. Конструкции и материалы волоконно-оптических кабелей
- •3.4.1. Типы конструкций волоконно-оптических кабелей
- •3.4.2. Основные элементы волоконно-оптического кабеля
- •3.4.3. Защита волоконно-оптического кабеля от влаги
- •3.4.4. Пожаробезопасность волоконно-оптических кабелей
- •3.4.5. Материалы для конструктивных элементов волоконно-оптических кабелей
- •3.4.6. Конструкции волоконно-оптических кабелей
- •Глава 4.
- •4.1. Исходные положения по конструированию
- •4.2. Расчет параметров вок на основе общих
- •4.3. Расчет оптических параметров и параметров передачи ов
- •4.4. Расчет механической прочности ок
- •4.4.1. Оценка внешних механических нагрузок, действующих на ок
- •4.4.2. Расчет механической прочности оптического кабеля и выбор конструкции
- •4.5. Расчет геометрических размеров вок и его элементов
- •4.5.1. Расчет геометрических размеров вок
- •4.5.2. Конструирование и расчет гофрированного покрова вок
- •4.6. Расчет масс элементов волоконно-оптического кабеля
- •4.7. Расчет уровня затухания оптического волокна
- •4.8. Технология изготовления волоконно-оптических кабелей
- •Глава 5
- •5.1. Классификация испытаний вок
- •5.2. Цель и особенности основных видов испытаний вок
- •5.3. Методы испытания вок
- •5.3.1. Общие положения
- •5.3.2. Методы измерения конструктивных параметров
- •5.3.3. Методы измерения оптических характеристик и параметров вок
- •5.3.4. Методы испытания вок на стойкость к механическим воздействиям
- •5.3.5. Методы испытания вок на стойкость к воздействию внешних факторов
- •Глава 6
- •6.1. Особенности и организация строительства волс
- •6.2. Прокладка и подвеска оптических кабелей
- •6.2.1. Прокладка ок в телефонной канализации
- •6.2.2. Прокладка ок в трубах, лотковой канализации, коллекторах и туннелях
- •6.2.3. Прокладка ок в грунт
- •6.2.4. Прокладка ок через водные преграды
- •6.2.5. Подвеска кабелей на опорах воздушных линий и стойках
- •6.3. Оптические соединители, конструкции муфт ок и
- •6.3.1. Потери при соединении волокон
- •6.3.2. Подготовка ов к сращиванию
- •6.3.3. Способы сращивания ов
- •6.3.4. Оконцовка волокна
- •6.3.5. Конструкции муфт ок и особенности их монтажа
- •Глава 7
- •7.1. Организация технической эксплуатации волс
- •7.2. Эксплуатационно-технические требования к волс
- •7.3. Организация технического обслуживания волс
- •7.4. Планирование, контроль и обеспечение работ
- •7.5. Технический учет и паспортизация волс
- •7.6. Ремонт линейных сооружений волс
- •7.7. Охрана кабельных сооружений волс
- •7.8. Телеконтроль, служебная связь и электропитание
- •7.9. Методы измерения волоконно-оптических линий связи
- •7.9.1. Назначение и виды измерений
- •7.9.2. Методы измерения параметров и характеристик
- •7.9.3. Измерения на воли во время аварий
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6.
- •Глава 7.
4.6. Расчет масс элементов волоконно-оптического кабеля
Основные конструктивные элементы ОК имеют цилиндрическую форму и являются сплошными (ОВ, токопроводящие жилы) или трубчатыми (изоляция, жилы ДП, трубки ОМ, оболочка, защитные покровы). Формулы для расчета масс конструктивных элементов в общем виде имеют соответственно вид
,
(4.110)
где d — диаметр сплошного элемента; DСР — средний диаметр трубчатого элемента; δ — толщина стенки трубчатого элемента; 1 — длина элемента; γ— плотность материала, из которого состоит данный конструктивный элемент; k, К — конструктивно-технологические коэффициенты (укрутки, спиральности, гофрирования и др.).
Диаметры и толщины конструктивных элементов всех кабелей стандартизованы в миллиметрах, а так как кабель — изделие длинномерное, то за единицу длины принят 1 км. Указанные дольная и кратная единицы СИ рекомендованы стандартами. Если при этом выражать плотность материала в тоннах на метр кубический, что по числовому значению соответствует граммам на кубический сантиметр (1 т/м3=1 г/см3), то масса материала будет выражена в килограммах на километр (кг/км). Тонна является диницей измерения, допустимой к применению наравне с единицами СИ.
В формулы подставляются номинальные размеры элементов (без учета допусков) и вычисляется номинальная масса (без учета отходов).
Остановимся на расчете масс наиболее используемых элементов в конструкциях ОК.
Масса оптических волокон. Масса сердцевины и оболочки ОВ в трубке оптического модуля или в пазе профилированного сердечника определяется выражением:
, (4.111)
где РС+О — масса сердцевины и оболочки ОВ, кг/км; b — радиус кварцевой оболочки ОВ, мм; γКС — плотность кварца, г/см3; КГ — коэффициент укрутки ОВ по геликоиде в ТЗО или пазе ПС; т — число ОВ в ТЗО или пазе ПС.
Масса всех ОВ в кабеле:
,
(4.112)
где п — число TЗО или пазов ПС; KУ — коэффициент укрутки ОМ или ПС.
Если в конструкции ОК расположен один профилированный сердечник, то КУ = 1.
Масса однослойного покрытия ОВ в кабеле определяется выражением вида:
, (4.113)
где PП ОВ — масса покрытия всех волокон в ОК, кг/км; Δ П ОВ — толщина покрытия ОВ, мм; γ П ОВ— плотность материала покрытия ОВ, г/см3; n П ОВ — общее число ОВ в кабеле.
Масса ОВ в полимерном покрытии определяется выражением:
. (4.114)
Масса центрального силового элемента. При использовании стального троса в полимерном покрытии масса такого ЦСЭ определяется следующим образом:
, (4.115)
где PЦСЭ, PT, РПТ — массы, кг/км, ЦСЭ, троса и полимерного покрытия троса соответственно.
,
(4.116)
где DЦ, DH — диаметры, мм, проволоки в центральном и наружном повивах троса соответственно; NH — число проволок в наружном повиве; КУП — коэффициент укрутки проволок троса; γТ — плотность материала проволок, г/см3; Kc — коэффициент, учитывающий приращение веса троса за счет его смазки (КС = 1,07).
, (4.117)
где DT — наружный диаметр троса, мм; ΔПТ — толщина покрытия троса, мм; γПТ — плотность материала покрытия троса, г/см3; КФ=1,13 [19] — коэффициент, учитывающий технологические факторы.
Масса ЦСЭ из стеклопластика определяется выражением:
, (4.118)
где DС — диаметр стеклопластикового стержня, мм; γС— плотность стеклопластика, г/см3.
Масса полимера трубок ОМ и профилированных сердечников. Масса полимера для трубок оптического модуля определяется выражением:
,
(4.119)
где DС — диаметр трубки ОМ, мм; ΔТЗО— толщина трубки ОМ, мм; γТЗО — плотность материала полимерной трубки, г/см3; KУ — коэффициент укрутки трубок ОМ; пТЗО — количество ОМ в кабеле.
Масса полимера для профилированного сердечника определяется выражением:
,
(4.120)
где SПС — площадь поперечного сечения профилированного сердечника ОК, мм2; γПС –плотность материала профилированного сердечника ОК, г/см3.
Масса гидрофобного заполнителя в ТЗО и пазах ПС. Масса гидрофобного заполнителя в ТЗО или пазе ПС кабеля:
, (4.121)
где
— внутренняя площадь поперечного
сечения ТЗО или паза ПС, мм2; SОВ
— площадь поперечного сечения ОВ, мм2;
γГЗ — плотность материала
гидрофобного заполнителя, г/см3.
Масса заполняющих элементов. Масса заполняющих элементов ОК определяется выражением:
, (4.122)
где РЗЭ — масса ЗЭ, кг/км; DЗЭ — диаметр заполняющего элемента, мм; γЗЭ — плотность материала ЗЭ, г/см3; nЗЭ — число заполняющих элементов в кабеле.
Масса жил дистанционного питания. Масса монометаллических жил дистанционного питания, кг/км, определяется выражением:
, (4.123)
где d0 — диаметр токопроводящей жилы, мм; nж — число жил в кабеле; γж — плотность материала жилы, г/см3; Ку— коэффициент укрутки.
Масса однородной изоляции жил ДП, наложенной сплошным цилиндрическим слоем, определяется по выражению вида:
, (4.124)
где ΔИЗ — толщина изоляции, мм; γИЗ — плотность материала полиэтилена, г/см3; nж — число жил ДП в кабеле.
Масса промежуточной оболочки. Масса экструдированной пластмассовой оболочки определяется выражением:
,
(4.125)
где DВТ — внутренний диаметр оболочки или диаметр под оболочкой (по поясной изоляции DПСН при отсутствии экрана; по экрану DЭ, если он есть; по разделительной обмотке поверх экрана DРОБМ), мм; ΔОБ — толщина оболочки, мм; γОБ— плотность материала оболочки, г/см; KТФ — коэффициент, учитывающий технологические факторы, в частности неравномерность по толщине: для пластмассовой оболочки KТФ= 1,04.
Масса броневых покровов. Определим массу брони из плоских, гофрированных лент и круглой проволоки.
Масса ленточной брони определяется выражением:
, (4.126)
где DПОД — диаметр по подушке или промежуточной оболочке, мм; ΔБР = 2 ΔЛ— общая толщина брони, мм; γЛ — плотность материала бронелент, г/см3; КЗА — коэффициент зазора аксиального.
Бронеленты накладываются с зазором между соседними витками, равным в среднем 1/3 ширины ленты (КНСР = 0,33). Согласно [14] КЗА = 0,75.
Масса гофрированной брони определяется выражением вида:
, (4.127)
где DВН — внутренний диаметр гофрированной оболочки по впадине гофра, мм; ΔБР — толщина брони, мм; γС ОБ — плотность материала трубки гофрированной брони, г/см3; КТФ — коэффициент, учитывающий технологические факторы (для стали КТФ = 1,04); КГ — коэффициент гофрирования брони.
Масса брони РБРПР кг/км, из круглой проволоки определяется по выражению вида:
, (4.128)
где dП — диаметр стальной проволоки, мм; N — число бронепроволок; КУПР — коэффициент укрутки бронепроволок.
Шаг наложения бронепроволок НБРПР=(8...15)DОБ, в среднем mТ= 11(mТ –теоретическая кратность шага скрутки) и КУПР≈1,04.
Число проволок брони рассчитывается по формуле:
. (4.129)
Дробное N округляется до ближайшего меньшего целого числа, при этом суммарный просвет между проволоками не должен превышать одного диаметра проволоки.
Масса защитного шланга. Масса защитного шланга определяется выражением вида:
,
(4.130)
где DВТ — диаметр под шлангом (по гладкой или гофрированной оболочке, по броне), мм; ΔШЛ - толщина шланга, мм; γШЛ— плотность материала защитного шланга, г/см3; КТФ=1,10 – коэффициент, учитывающий технологические факторы.