
- •Д.В. Иоргачев
- •Д.В. Иоргачев
- •Isbn 5-88405-041-0 © Авторы, 2002 содержание
- •Глава 1. Краткий обзор по истории развития оптической связи …………………………………….6
- •Глава 2. Основные принципы действия волоконных световодов.
- •Глава 3. Оптические волокна и кабели. Классификация,
- •Глава 4. Основные положения по конструированию и особенности
- •Глава 5. Методы испытания волоконно-оптических кабелей ..........................................................139
- •5.3.1. Общие положения .........................................................................................................146
- •Глава 6. Строительство и монтаж волоконно-оптических линий связи.........................................168
- •Глава 7. Основы технической эксплуатации волоконно-оптических линий связи .....................205
- •Глава 1
- •Глава 2
- •2.1. Волны, частицы и электромагнитный спектр
- •2.2. Принцип действия волоконных световодов
- •2.3. Основные положения геометрической (лучевой) оптики
- •2.3.1. Основы геометрической оптики
- •2.3.2. Анализ лучевого распространения света в волоконных световодах
- •2.4. Основные положения волновой теории
- •2.4.1. Основные понятия
- •2.4.2. Взаимодействие оптической волны со средой
- •2.4.3. Волновые уравнения
- •2.4.4. Граничные условия
- •2 .4.5. Волновой анализ распространения мод
- •2.4.6. Глоговское группирование мод
- •2.5. Параметры оптических волокон
- •2 .5.1. Геометрические и оптические параметры оптических волокон
- •2.5.2. Параметры передачи оптических волокон
- •2.5.3. Механические параметры оптических волокон
- •Глава 3
- •3.1. Многомодовые и одномодовые оптические
- •3.2. Материалы оптических волокон из кварцевого стекла
- •3.3. Изготовление оптических волокон
- •3.3.1. Общие положения
- •3.3.2. Технология изготовления опорных кварцевых труб
- •3.3.3. Изготовление заготовок путем плавления стекла
- •3.3.4. Изготовление заготовки методом осаждения стекла из паровой фазы
- •3.3.5. Модифицированный метод химического парофазного осаждения (мсvd)
- •3.3.6. Плазменный метод химического парофазного осаждения (pcvd)
- •3.3.7. Метод внешнего парофазного осаждения (ovd)
- •3.3.8. Метод осевого парофазного осаждения (vаd)
- •Vad метод изготовления заготовок
- •3.3.9. Вытяжка оптического волокна
- •3.4. Конструкции и материалы волоконно-оптических кабелей
- •3.4.1. Типы конструкций волоконно-оптических кабелей
- •3.4.2. Основные элементы волоконно-оптического кабеля
- •3.4.3. Защита волоконно-оптического кабеля от влаги
- •3.4.4. Пожаробезопасность волоконно-оптических кабелей
- •3.4.5. Материалы для конструктивных элементов волоконно-оптических кабелей
- •3.4.6. Конструкции волоконно-оптических кабелей
- •Глава 4.
- •4.1. Исходные положения по конструированию
- •4.2. Расчет параметров вок на основе общих
- •4.3. Расчет оптических параметров и параметров передачи ов
- •4.4. Расчет механической прочности ок
- •4.4.1. Оценка внешних механических нагрузок, действующих на ок
- •4.4.2. Расчет механической прочности оптического кабеля и выбор конструкции
- •4.5. Расчет геометрических размеров вок и его элементов
- •4.5.1. Расчет геометрических размеров вок
- •4.5.2. Конструирование и расчет гофрированного покрова вок
- •4.6. Расчет масс элементов волоконно-оптического кабеля
- •4.7. Расчет уровня затухания оптического волокна
- •4.8. Технология изготовления волоконно-оптических кабелей
- •Глава 5
- •5.1. Классификация испытаний вок
- •5.2. Цель и особенности основных видов испытаний вок
- •5.3. Методы испытания вок
- •5.3.1. Общие положения
- •5.3.2. Методы измерения конструктивных параметров
- •5.3.3. Методы измерения оптических характеристик и параметров вок
- •5.3.4. Методы испытания вок на стойкость к механическим воздействиям
- •5.3.5. Методы испытания вок на стойкость к воздействию внешних факторов
- •Глава 6
- •6.1. Особенности и организация строительства волс
- •6.2. Прокладка и подвеска оптических кабелей
- •6.2.1. Прокладка ок в телефонной канализации
- •6.2.2. Прокладка ок в трубах, лотковой канализации, коллекторах и туннелях
- •6.2.3. Прокладка ок в грунт
- •6.2.4. Прокладка ок через водные преграды
- •6.2.5. Подвеска кабелей на опорах воздушных линий и стойках
- •6.3. Оптические соединители, конструкции муфт ок и
- •6.3.1. Потери при соединении волокон
- •6.3.2. Подготовка ов к сращиванию
- •6.3.3. Способы сращивания ов
- •6.3.4. Оконцовка волокна
- •6.3.5. Конструкции муфт ок и особенности их монтажа
- •Глава 7
- •7.1. Организация технической эксплуатации волс
- •7.2. Эксплуатационно-технические требования к волс
- •7.3. Организация технического обслуживания волс
- •7.4. Планирование, контроль и обеспечение работ
- •7.5. Технический учет и паспортизация волс
- •7.6. Ремонт линейных сооружений волс
- •7.7. Охрана кабельных сооружений волс
- •7.8. Телеконтроль, служебная связь и электропитание
- •7.9. Методы измерения волоконно-оптических линий связи
- •7.9.1. Назначение и виды измерений
- •7.9.2. Методы измерения параметров и характеристик
- •7.9.3. Измерения на воли во время аварий
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6.
- •Глава 7.
2.5.3. Механические параметры оптических волокон
К механическим параметрам ОВ относятся:
• прочность волокна;
• динамическая прочность на разрыв;
• параметр нагрузки разрушения;
• стойкость к изгибам;
• усилие снятия защитного покрытия.
Прочность волокна. Стекло принято считать хрупким. Оконное стекло действительно не гнется. Однако стеклянные волокна можно согнуть в виде окружности небольшого диаметра или завязать в свободный узел, не повреждая их. (Затягивание тугого узла может повредить волокно.)
Предел прочности характеризует способность волокна противостоять натяжению или изгибу без повреждения. Предел прочности волокна на разрыв превосходит ту же величину для стальной нити идентичного размера. Более того, медный проводник должен иметь вдвое больший диаметр, чтобы обеспечить тот же предел точности, что и волокно.
Основная причина, обусловливающая хрупкость волокна, это наличие микротрещин на поверхности и дефектов внутри волокна. При этом поверхностные трещины более существенны. Поверхностные дефекты могут возрастать под воздействием растягивающей нагрузки, возникающей во время прокладки кабеля. Температурные изменения, механические и химические воздействия, обычное старение также приводят к появлению дефектов. Расширяющиеся дефекты приводят к случайному обрыву волокна. Для разрезания стекла делается узкая царапина на его поверхности. Затем, в результате резкого надлома, стекло трескается вдоль царапины. Аналогичный процесс происходит в волокне. Скрытые дефекты действуют аналогично царапине на поверхности стекла. Как только к волокну прикладывается достаточно сильное растягивающее напряжение, дефекты растут внутри волокна до тех пор, пока оно не разрывается.
Динамическая прочность на разрыв. Динамическая прочность ОВ на разрыв — это определенное значение интенсивности нагрузки на растяжение или сжимание, которой подвергается вся длина волокна в его осевом направлении на протяжении определенного кратковременного периода [20].
Величина динамической прочности на разрыв ОВ составляет обычно величину более чем 38 ГПа для образцов, не подвергшихся старению, длиной 0,5 м.
Параметр нагрузки разрушения. Параметр нагрузки разрушения — это безразмерный коэффициент, эмпирически связанный с зависимостью распространения разрушения (трещины) ОВ от приложенной нагрузки [20). Величина параметра нагрузки разрушения зовисит от окружающей температуры, влажности и других условий.
Статистические и динамические значения параметров нагрузки разрушения обычно задаются в технической документации на ОВ. Статические значения параметра нагрузки разрушения (пс) — это отрицательная крутизна графика зависимости времени наработки ОВ на отказ через статическую усталость в зависимости от приложенной нагрузки в двойном логарифмическом масштабе.
Динамическое значение параметра нагрузки разрушения (пд) — это такая величина, которая показывает, что значение 1/(пд+1) есть крутизна графика динамической усталости в двойном логарифмическом масштабе в зависимости от скорости изменения напряжения в волокне, обусловленного приложенной нагрузкой. Значение параметра динамической усталости пд определяется методом испытания динамической усталости.
Параметры пс и пд обычно указываются в технической документации на ОВ и, как пpaвило, их величина больше 20.
Стойкость к изгибам. Несмотря на то, что волокно может быть согнуто в окружность, оно имеет минимальный радиус изгиба. Достаточно резкий изгиб может разорвать волокна. Изгибы также приводят к двум другим эффектам.
1. Слегка увеличивается затухание. Этот эффект должен быть интуитивно понятен. Изгибы изменяют углы падения и отражения света внутри волокна настолько, что часть его, заключенная в модах высокого порядка, может покидать волокно (подобно случаю с микроизгибами).
2. Уменьшается предел прочности волокна на разрыв. Если растяжение сопровождается изгибом волокна, оно может разорваться при меньшем значении растягивающей нагрузки, чем в случае выпрямленного волокна.
Согласно спецификации на ОВ некоторых фирм минимальный радиус кривизны равен пяти диаметрам кабеля при отсутствии растягивающих напряжений и 10 диаметрам кабеля при их наличии.
Усилие снятия защитного покрытия. Этот параметр характеризует усилие, которое необходимо приложить для удаления покрытия с волокна, не подвергая последнее чрезмерному механическому напряжению, которое может привести к его разрыву. Как правило, усилие снятия защитного покрытия ОВ составляет величину, находящуюся в пределе от 1,3 Н до 9 Н.