
- •Д.В. Иоргачев
- •Д.В. Иоргачев
- •Isbn 5-88405-041-0 © Авторы, 2002 содержание
- •Глава 1. Краткий обзор по истории развития оптической связи …………………………………….6
- •Глава 2. Основные принципы действия волоконных световодов.
- •Глава 3. Оптические волокна и кабели. Классификация,
- •Глава 4. Основные положения по конструированию и особенности
- •Глава 5. Методы испытания волоконно-оптических кабелей ..........................................................139
- •5.3.1. Общие положения .........................................................................................................146
- •Глава 6. Строительство и монтаж волоконно-оптических линий связи.........................................168
- •Глава 7. Основы технической эксплуатации волоконно-оптических линий связи .....................205
- •Глава 1
- •Глава 2
- •2.1. Волны, частицы и электромагнитный спектр
- •2.2. Принцип действия волоконных световодов
- •2.3. Основные положения геометрической (лучевой) оптики
- •2.3.1. Основы геометрической оптики
- •2.3.2. Анализ лучевого распространения света в волоконных световодах
- •2.4. Основные положения волновой теории
- •2.4.1. Основные понятия
- •2.4.2. Взаимодействие оптической волны со средой
- •2.4.3. Волновые уравнения
- •2.4.4. Граничные условия
- •2 .4.5. Волновой анализ распространения мод
- •2.4.6. Глоговское группирование мод
- •2.5. Параметры оптических волокон
- •2 .5.1. Геометрические и оптические параметры оптических волокон
- •2.5.2. Параметры передачи оптических волокон
- •2.5.3. Механические параметры оптических волокон
- •Глава 3
- •3.1. Многомодовые и одномодовые оптические
- •3.2. Материалы оптических волокон из кварцевого стекла
- •3.3. Изготовление оптических волокон
- •3.3.1. Общие положения
- •3.3.2. Технология изготовления опорных кварцевых труб
- •3.3.3. Изготовление заготовок путем плавления стекла
- •3.3.4. Изготовление заготовки методом осаждения стекла из паровой фазы
- •3.3.5. Модифицированный метод химического парофазного осаждения (мсvd)
- •3.3.6. Плазменный метод химического парофазного осаждения (pcvd)
- •3.3.7. Метод внешнего парофазного осаждения (ovd)
- •3.3.8. Метод осевого парофазного осаждения (vаd)
- •Vad метод изготовления заготовок
- •3.3.9. Вытяжка оптического волокна
- •3.4. Конструкции и материалы волоконно-оптических кабелей
- •3.4.1. Типы конструкций волоконно-оптических кабелей
- •3.4.2. Основные элементы волоконно-оптического кабеля
- •3.4.3. Защита волоконно-оптического кабеля от влаги
- •3.4.4. Пожаробезопасность волоконно-оптических кабелей
- •3.4.5. Материалы для конструктивных элементов волоконно-оптических кабелей
- •3.4.6. Конструкции волоконно-оптических кабелей
- •Глава 4.
- •4.1. Исходные положения по конструированию
- •4.2. Расчет параметров вок на основе общих
- •4.3. Расчет оптических параметров и параметров передачи ов
- •4.4. Расчет механической прочности ок
- •4.4.1. Оценка внешних механических нагрузок, действующих на ок
- •4.4.2. Расчет механической прочности оптического кабеля и выбор конструкции
- •4.5. Расчет геометрических размеров вок и его элементов
- •4.5.1. Расчет геометрических размеров вок
- •4.5.2. Конструирование и расчет гофрированного покрова вок
- •4.6. Расчет масс элементов волоконно-оптического кабеля
- •4.7. Расчет уровня затухания оптического волокна
- •4.8. Технология изготовления волоконно-оптических кабелей
- •Глава 5
- •5.1. Классификация испытаний вок
- •5.2. Цель и особенности основных видов испытаний вок
- •5.3. Методы испытания вок
- •5.3.1. Общие положения
- •5.3.2. Методы измерения конструктивных параметров
- •5.3.3. Методы измерения оптических характеристик и параметров вок
- •5.3.4. Методы испытания вок на стойкость к механическим воздействиям
- •5.3.5. Методы испытания вок на стойкость к воздействию внешних факторов
- •Глава 6
- •6.1. Особенности и организация строительства волс
- •6.2. Прокладка и подвеска оптических кабелей
- •6.2.1. Прокладка ок в телефонной канализации
- •6.2.2. Прокладка ок в трубах, лотковой канализации, коллекторах и туннелях
- •6.2.3. Прокладка ок в грунт
- •6.2.4. Прокладка ок через водные преграды
- •6.2.5. Подвеска кабелей на опорах воздушных линий и стойках
- •6.3. Оптические соединители, конструкции муфт ок и
- •6.3.1. Потери при соединении волокон
- •6.3.2. Подготовка ов к сращиванию
- •6.3.3. Способы сращивания ов
- •6.3.4. Оконцовка волокна
- •6.3.5. Конструкции муфт ок и особенности их монтажа
- •Глава 7
- •7.1. Организация технической эксплуатации волс
- •7.2. Эксплуатационно-технические требования к волс
- •7.3. Организация технического обслуживания волс
- •7.4. Планирование, контроль и обеспечение работ
- •7.5. Технический учет и паспортизация волс
- •7.6. Ремонт линейных сооружений волс
- •7.7. Охрана кабельных сооружений волс
- •7.8. Телеконтроль, служебная связь и электропитание
- •7.9. Методы измерения волоконно-оптических линий связи
- •7.9.1. Назначение и виды измерений
- •7.9.2. Методы измерения параметров и характеристик
- •7.9.3. Измерения на воли во время аварий
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6.
- •Глава 7.
2.5. Параметры оптических волокон
2 .5.1. Геометрические и оптические параметры оптических волокон
Основными геометрическими параметрами ОВ являются: диаметр сердцевины; диаметр оболочки; диаметр защитного покрытия; некруглость (эллиптичность) сердцевины; некруглость оболочки; неконцентричность сердцевины и оболочки.
Н
Рис. 2.25. Примеры
неоднородностей в ОВ: а – некруглость;
б – неконцентричность
сердцевины и оболочки ОВ
(2.64)
где Нс — некруглость
сердцевины, %; dмакс, dмин
— наибольший и наименьший диаметр
сердцевины, мкм, соответственно; dн
— номинальный диаметр сердцевины, мкм.
Некруглость оболочки ОВ определяется аналогично.
Неконцентричность сердцевины относительно оболочки определяется как расстояние между центрами оболочки и сердцевины ОВ (рис. 2.25 б) и определяется из выражения:
(2.65)
где Нс/о — неконцентричность сердцевины относительно оболочки, мкм; Цс — координаты центра сердцевины, мкм; Цо — координата центра оболочки, мкм.
Геометрические параметры стандартизированы для разных типов ОВ [9, 10, 11, 12, 13].
Поэтому остановимся более подробно на оптических параметрах ОВ.
Основными оптическими параметрами волокна являются:
• относительная разность показателей преломления (Δ);
• числовая апертура(NА);
• нормированная частота (v);
• число распространяющихся мод (М);
• диаметр модового поля (dмп);
• длина волны отсечки (критическая длина волны λкр).
Относительная разность показателей преломления. Относительная разность ПП сердцевины и оболочки ОВ определяется выражением (2.12).
Числовая апертура. Одной из основных характеристик, определяющих условия ввода оптических сигналов и процессы их распространения в ОВ, является числовая апертура, определяемая для:
• оптических волокон со ступенчатым ППП
(2.66)
• оптического волокна с градиентным профилем ППП
(2.67)
В градиентных ОВ используется понятие локальной числовой апертуры. Ее значение
максимально на оси волокна и равно 0 на границе раздела сердцевина — оболочка.
Нормированная частота. Этот параметр, определяющий число мод, равен:
(2.68)
где λ — длина волны, мкм.
Если 0<v<2,405, то режим работы волокна одномодовый, если v>2,405 — многомодовый. Чем меньше диаметр сердцевины ОВ, тем меньшее число мод может распространяться по нему и тем меньшее расширение получают оптические импульсы. Соответственно увеличивается коэффициент широкополосности ОВ. Таким образом, одномодовое (ООВ) может передавать более широкополосные сигналы, чем многомодовое (МОВ).
Число мод в многомодовом оптическом волокне. Общее число мод в МОВ с диаметром сердцевины 2а, заданной числовой апертурой на рабочей длине волны λ определяется через нормированную частоту выражением вида:
(2.69)
В расчетах М может оказаться дробным числом, в то время как число мод в волокне бывает только целым и составляет от одной до тысячи мод. В волокне с градиентным ППП и теми же значениями диаметра сердцевины, показателей преломления п1 и п2 число мод примерно в 2 раза меньше, чем в ОВ со ступенчатым ППП. Количество мод (с учетом всех вырожденных мод) в случае ступенчатого ППП (2.2) определяется выражением вида:
(2.70)
где u — показатель степени, описывающий изменения ППП.
Диаметр модового поля в ООВ. Важным интегральным параметром ООВ является диаметр модового поля. Этот параметр используется при анализе одномодовых волокон.
В многомодовых ОВ размер сердцевины принято оценивать диаметром (2а), в одномодовых волокнах — с помощью диаметра модового поля (dМП). Это связано с тем, что энергия основной моды в ООВ распространяется не только в сердцевине, но и частично в оболочке, захватывая ее приграничную область. Поэтому dМП более точно оценивает размеры поперечного распределения энергии основной моды. Величина dМП является важной при стыковке волокон между собой, а также при стыковке источника излучения с волокном.
В [14] показана зависимость распределения интенсивности (мощности) излучения основной моды одномодового волокна в ближней зоне от радиуса (рис.2.26). Эта зависимость аппроксимируется с достаточной степенью точности формулой Гаусса:
(2.71)
где J(r) — интенсивность излучения на расстоянии r от оси ООВ; J0 — интенсивность излучения на оси ООВ (при r=O); Wo — радиус модового поля, т. е. значение радиуса, при котором интенсивность излучения составляет 1/е2 = 0,35J0 .
Согласно [6, 15] радиус поля моды Wo в микрометрах определяется при известных значениях v и а=dc/2 из соотношения
или
(2.72)
Т
огда
искомое значение диаметра модового
поля равно dМП=2W0.
Длина волны отсечки в ООВ. Минимальная длина волны, при которой ОВ поддерживает только одну распространяющуюся моду, называется длиной волны отсечки. Этот параметр характерен для ООВ. Если λкр меньше, чем длина волны отсечки, то имеет место многомодовый режим распространения света.
С
Рис. 2.26. Зависимость
распределения интенсивности излучения
основной моды ООВ в ближней зоне от
радиуса
(2.73)
Длина отсечки в проложенном кабеле λсс соответствует напряженному ОВ. На практике ОВ в проложенном или подвешенном на опорах кабеле имеет большое число изгибов. Кроме того, сильные искривления имеются в ОВ, уложенных в кассеты муфт и промежуточных соединителях на объектах связи (сплайс-боксах). Все это ведет к подавлению побочных мод и сдвигу λсс в сторону коротких длин волн в сравнении с λс. Разницу между λсс и λс можно оценить только экспериментальным путем.