
- •1.Определите 2-го порядка. Их св-ва. Правила вычисления.
- •2.Определители 3-го порядка. Методы вычисления.
- •3.Системы м линейных n неизвестных. Основные понятия и решения.
- •4.Определение матрицы. Классификация матриц. Действия над ними.
- •5.Определение обратной матрицы, ее св-ва. Вычисление обратной матрицы.
- •6.Ранг матрицы
- •8.Понятие о линейной зависимости и независимости (векторов).
- •9.Теорема о ранге матрицы, ее следствие.
- •10.Вычисление обратной матрицы с помощью элементарных преобразований.
- •11.Теорема Кронекера Капелли. (о совместности решения сист.)
- •12.Однородные сист. Линейных ур-й. Их св-ва.
- •13.Метод Гаусса. Решение сист. Линейных алгебраических ур-й этим методом.
- •14.Векторы. Основные определения.
- •15.Линейные операции над векторами.
- •16.Определение проекция вектора.
- •17.Теоремы о проекциях векторов.
- •18.Скалярное произведение векторов. Его св-ва.
- •19.Длина вектора, расстояние между точками.
- •20.Угол между двумя векторами. Направление косинуса (cos) вектора.
- •21.Условие параллельности и перпендикулярности векторов.
- •22.Деление отрезка в данном отношении.
- •23.Векторное произведение векторов. Его св-ва.
- •24.Выражение векторного произведения через проекции векторов.
- •25.Смешанное произведение векторов и его св-ва.
- •26.Объем параллелепипеда и пирамиды с помощью смешанного произведения векторов.
- •27.Прямая линия на плоскости.
- •28.Исследование общего ур-я прямой.
- •30.Угол между двумя прямыми.
- •32.Расстояние от точки до прямой.
- •34.Исследование общего ур-я плоскости.
- •36.Условие параллельности и перпендикулярности плоскостей.
- •37.Расстояние от точки до плоскости
- •38.Прямая в пространстве
- •39.Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых в пространстве.
- •40.Угол между прямой и плоскостью
- •41.Условие перпендикулярности и параллельности прямой и плоскости.
- •42.Вывод ур-й кривых 2-го порядка. (окружность, эллипс, гипербола, парабола)
- •42.Поверхности 2-го порядка
- •45.Модуль действительного числа. Его св-ва.
- •46. Числовая последовательность. Предел числовой последовательности.
- •48.Бесконечно малые и бесконечно большие ф-и и их св-ва.
- •49.Основные теоремы о пределах: предел суммы, разности, произведения, частного
- •50.Замечательные пределы
- •51.Сравнение бесконечно малых. Теоремы об эквивалентных бесконечно малых(табл.).
- •52. Определение непрерывности ф-и в точке. Классификация точек разрыва.
- •55.Понятие производной. Геометрический и физический смысл производной.
- •Геометрический смысл производной.
- •3. Физический смысл производной.
- •56.Необходимые условия существования производной.
- •57.Вывод формулы производной от элементарных ф-й.(в тетради)
- •58.Дифференцирование ф-й заданных неявно и параметрически.
- •21.2. Функция, заданная параметрически
- •59.Дифференциал ф-и. Ее геометрический смысл. Св-ва. Таблица дифференциалов.
- •Свойства дифференциала аналогичны свойствам производной.
- •60.Производная и дифференциал высших порядков.
- •61.Формула приближенного вычисления ф-и.
- •62.Теоремы о среднем: Ферма, Ролля, Лагранжа, Каши.
- •3. Теорема Коши
- •64.Выпуклость, вогнутость, точки перегиба графика.
- •65.Асимптоты графика ф-и.
- •66.Общая схема исследования ф-и и построение графика.
57.Вывод формулы производной от элементарных ф-й.(в тетради)
58.Дифференцирование ф-й заданных неявно и параметрически.
Неявно заданная функция
Если функция задана уравнением у=ƒ(х), разрешенным относительно у, то функция задана в явном виде (явная функция).
Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у.
Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот.
Не всегда легко, а иногда и невозможно разрешить уравнение относительно у (например, у+2х+cosy-1=0 или 2у-х+у=0).
Если неявная функция задана уравнением F(x; у)=0, то для нахождения производной от у по х нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию х, и полученное затем уравнение разрешить относительно у'.
Производная неявной функции выражается через аргумент х и функцию у.
<< Пример 21.1
Найти производную функции у, заданную уравнением х3+у3-3ху=0.
Решение: Функция у задана неявно. Дифференцируем по х равенство х3+у3-3ху=0. Из полученного соотношения
3х2+3у2· у'-3(1· у+х· у')=0
следует, что у2у'-ху'=у-х2, т. е. у'=(у-х2)/(у2-х).
21.2. Функция, заданная параметрически
Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений
где t — вспомогательная переменная, называемая параметром.
Найдем производную у'х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции
Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у'х=y't•t'x. С учетом равенства (21.2) получаем
Полученная формула позволяет находить производную у'х от функции заданной параметрически, не находя непосредственной зависимости у от х.
<< Пример 21.2
Пусть
Найти у'х.
Решение:
Имеем x't=3t2,
y't=2t.
Следовательно, у'х=2t/t2,
т. е.
В этом можно убедиться, найдя непосредственно зависимость у от х.
Действительно,
Тогда
Отсюда
т. е.
59.Дифференциал ф-и. Ее геометрический смысл. Св-ва. Таблица дифференциалов.
Пусть
функция
определена
на промежутке
и
дифференцируема в окрестности точки
,тогда
или
по теореме о связи бесконечно малых с
пределами функций имеем
,
где
-
бесконечно малая величина при
.
Отсюда:
.
(
7.1)
Таким
образом, приращение функции
состоит
из двух слагаемых:
1)
-
линейного относительно
,
т.к.
;
2)
-
нелинейного относительно
,
т.к.
.
Определение. Дифференциалом функции называется главная, линейная относительно часть приращения функции, равная произведению производной на приращение независимой переменной:
. Пример.
Найти приращение функции
при
и
:Решение.
,
Пример.
Найти дифференциал функции
.Решение.
По формуле (7.2.) имеем
.Определение.
Дифференциал независимой переменной
равен
приращению этой переменной:
(
7.3)
Тогда формулу (7.2) для дифференциала функции можно записать в виде:
(
7.4)
Откуда
,
поэтому
можно
рассматривать не только как символическое
обозначение производной, но и как обычную
дробь с числителем
и
знаменателем
.
|
Геометрический
смысл.
На
графике функции
|
Следовательно, с геометрической точки зрения дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда получает приращение .