- •1.Определите 2-го порядка. Их св-ва. Правила вычисления.
- •2.Определители 3-го порядка. Методы вычисления.
- •3.Системы м линейных n неизвестных. Основные понятия и решения.
- •4.Определение матрицы. Классификация матриц. Действия над ними.
- •5.Определение обратной матрицы, ее св-ва. Вычисление обратной матрицы.
- •6.Ранг матрицы
- •8.Понятие о линейной зависимости и независимости (векторов).
- •9.Теорема о ранге матрицы, ее следствие.
- •10.Вычисление обратной матрицы с помощью элементарных преобразований.
- •11.Теорема Кронекера Капелли. (о совместности решения сист.)
- •12.Однородные сист. Линейных ур-й. Их св-ва.
- •13.Метод Гаусса. Решение сист. Линейных алгебраических ур-й этим методом.
- •14.Векторы. Основные определения.
- •15.Линейные операции над векторами.
- •16.Определение проекция вектора.
- •17.Теоремы о проекциях векторов.
- •18.Скалярное произведение векторов. Его св-ва.
- •19.Длина вектора, расстояние между точками.
- •20.Угол между двумя векторами. Направление косинуса (cos) вектора.
- •21.Условие параллельности и перпендикулярности векторов.
- •22.Деление отрезка в данном отношении.
- •23.Векторное произведение векторов. Его св-ва.
- •24.Выражение векторного произведения через проекции векторов.
- •25.Смешанное произведение векторов и его св-ва.
- •26.Объем параллелепипеда и пирамиды с помощью смешанного произведения векторов.
- •27.Прямая линия на плоскости.
- •28.Исследование общего ур-я прямой.
- •30.Угол между двумя прямыми.
- •32.Расстояние от точки до прямой.
- •34.Исследование общего ур-я плоскости.
- •36.Условие параллельности и перпендикулярности плоскостей.
- •37.Расстояние от точки до плоскости
- •38.Прямая в пространстве
- •39.Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых в пространстве.
- •40.Угол между прямой и плоскостью
- •41.Условие перпендикулярности и параллельности прямой и плоскости.
- •42.Вывод ур-й кривых 2-го порядка. (окружность, эллипс, гипербола, парабола)
- •42.Поверхности 2-го порядка
- •45.Модуль действительного числа. Его св-ва.
- •46. Числовая последовательность. Предел числовой последовательности.
- •48.Бесконечно малые и бесконечно большие ф-и и их св-ва.
- •49.Основные теоремы о пределах: предел суммы, разности, произведения, частного
- •50.Замечательные пределы
- •51.Сравнение бесконечно малых. Теоремы об эквивалентных бесконечно малых(табл.).
- •52. Определение непрерывности ф-и в точке. Классификация точек разрыва.
- •55.Понятие производной. Геометрический и физический смысл производной.
- •Геометрический смысл производной.
- •3. Физический смысл производной.
- •56.Необходимые условия существования производной.
- •57.Вывод формулы производной от элементарных ф-й.(в тетради)
- •58.Дифференцирование ф-й заданных неявно и параметрически.
- •21.2. Функция, заданная параметрически
- •59.Дифференциал ф-и. Ее геометрический смысл. Св-ва. Таблица дифференциалов.
- •Свойства дифференциала аналогичны свойствам производной.
- •60.Производная и дифференциал высших порядков.
- •61.Формула приближенного вычисления ф-и.
- •62.Теоремы о среднем: Ферма, Ролля, Лагранжа, Каши.
- •3. Теорема Коши
- •64.Выпуклость, вогнутость, точки перегиба графика.
- •65.Асимптоты графика ф-и.
- •66.Общая схема исследования ф-и и построение графика.
32.Расстояние от точки до прямой.
Пусть
на плоскости хОу дана прямая. Проведем
через начало координат перпендикуляр
к данной прямой и назовем его нормалью.
Обозначим через Р точку пересечения
нормали с данной прямой и установим
положительное направление нормали от
точки О к точке Р. Прямая заданна
нормальным ур-е прямой
Пусть
дана какая-нибудь прямая и произвольная
точка
;
обозначим через d расстояние от точки
М* до данной прямой.
Пусть ОМ вектор= x1i+x1y;
ON вектор нормали= p*n
Вектор
n=
d=|PM
|
Левую и правую сторону умножим на вектор n.
±d=
33.Ур-е плоскости в пространстве.
возьмем декартовую сист. Координат.
рассмотрим произвольную точку М0(х0, у0,z0)
в
ектор
N (A,B,C)
Возьмем внутри т.М(X,Y,Z)
Проведем ММ0
Запишем условие перпенлик. Вектора MM0, N=0;
N=Ai+Bj+Ck
-Ax0-By0-Cz0=D
Опр:
Любое линейное уравнение от 3-х переменных
определяет пл-ть в пространстве и
обратно.
-
общее ур-е пл-ти в пространстве
-пл-ть
проходит через начало координат
34.Исследование общего ур-я плоскости.
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох
В = 0 – плоскость параллельна оси Оу
С = 0 – плоскость параллельна оси Оz
D = 0 – плоскость проходит через начало координат
А = В = 0 – плоскость параллельна плоскости хОу
А = С = 0 – плоскость параллельна плоскости хОz
В = С = 0 – плоскость параллельна плоскости yOz
А = D = 0 – плоскость проходит через ось Ох
В = D = 0 – плоскость проходит через ось Оу
С = D = 0 – плоскость проходит через ось Oz
А = В = D = 0 – плоскость совпадает с плоскостью хОу
А = С = D = 0 – плоскость совпадает с плоскостью xOz
В = С = D = 0 – плоскость совпадает с плоскостью yOz
35.Ур-е плоскости в различных видах: в отрезках, через три точки, нормальное ур-е плоскости. Угол между двумя плоскостями.
Уравнение плоскости, проходящей через три точки
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.
Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат.
Для
того, чтобы произвольная точка М(x,
y,
z)
лежала в одной плоскости с точками М1,
М2,
М3
необходимо, чтобы векторы
были
компланарны.
( ) = 0
Таким образом,
Уравнение плоскости, проходящей через три точки:
Уравнение плоскости в отрезках
Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)
,
заменив
,
получим уравнение плоскости в отрезках:
Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.
Нормальное уравнение плоскости.
-нормальное
ур-е пл-ти
p - расстояние от начала координат до плоскости.
У
гол
между плоскостями.
36.Условие параллельности и перпендикулярности плоскостей.
Условие параллельности двух плоскостей.
;
Условие перпендикулярности двух плоскостей.
;
;
