
- •1.Определите 2-го порядка. Их св-ва. Правила вычисления.
- •2.Определители 3-го порядка. Методы вычисления.
- •3.Системы м линейных n неизвестных. Основные понятия и решения.
- •4.Определение матрицы. Классификация матриц. Действия над ними.
- •5.Определение обратной матрицы, ее св-ва. Вычисление обратной матрицы.
- •6.Ранг матрицы
- •8.Понятие о линейной зависимости и независимости (векторов).
- •9.Теорема о ранге матрицы, ее следствие.
- •10.Вычисление обратной матрицы с помощью элементарных преобразований.
- •11.Теорема Кронекера Капелли. (о совместности решения сист.)
- •12.Однородные сист. Линейных ур-й. Их св-ва.
- •13.Метод Гаусса. Решение сист. Линейных алгебраических ур-й этим методом.
- •14.Векторы. Основные определения.
- •15.Линейные операции над векторами.
- •16.Определение проекция вектора.
- •17.Теоремы о проекциях векторов.
- •18.Скалярное произведение векторов. Его св-ва.
- •19.Длина вектора, расстояние между точками.
- •20.Угол между двумя векторами. Направление косинуса (cos) вектора.
- •21.Условие параллельности и перпендикулярности векторов.
- •22.Деление отрезка в данном отношении.
- •23.Векторное произведение векторов. Его св-ва.
- •24.Выражение векторного произведения через проекции векторов.
- •25.Смешанное произведение векторов и его св-ва.
- •26.Объем параллелепипеда и пирамиды с помощью смешанного произведения векторов.
- •27.Прямая линия на плоскости.
- •28.Исследование общего ур-я прямой.
- •30.Угол между двумя прямыми.
- •32.Расстояние от точки до прямой.
- •34.Исследование общего ур-я плоскости.
- •36.Условие параллельности и перпендикулярности плоскостей.
- •37.Расстояние от точки до плоскости
- •38.Прямая в пространстве
- •39.Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых в пространстве.
- •40.Угол между прямой и плоскостью
- •41.Условие перпендикулярности и параллельности прямой и плоскости.
- •42.Вывод ур-й кривых 2-го порядка. (окружность, эллипс, гипербола, парабола)
- •42.Поверхности 2-го порядка
- •45.Модуль действительного числа. Его св-ва.
- •46. Числовая последовательность. Предел числовой последовательности.
- •48.Бесконечно малые и бесконечно большие ф-и и их св-ва.
- •49.Основные теоремы о пределах: предел суммы, разности, произведения, частного
- •50.Замечательные пределы
- •51.Сравнение бесконечно малых. Теоремы об эквивалентных бесконечно малых(табл.).
- •52. Определение непрерывности ф-и в точке. Классификация точек разрыва.
- •55.Понятие производной. Геометрический и физический смысл производной.
- •Геометрический смысл производной.
- •3. Физический смысл производной.
- •56.Необходимые условия существования производной.
- •57.Вывод формулы производной от элементарных ф-й.(в тетради)
- •58.Дифференцирование ф-й заданных неявно и параметрически.
- •21.2. Функция, заданная параметрически
- •59.Дифференциал ф-и. Ее геометрический смысл. Св-ва. Таблица дифференциалов.
- •Свойства дифференциала аналогичны свойствам производной.
- •60.Производная и дифференциал высших порядков.
- •61.Формула приближенного вычисления ф-и.
- •62.Теоремы о среднем: Ферма, Ролля, Лагранжа, Каши.
- •3. Теорема Коши
- •64.Выпуклость, вогнутость, точки перегиба графика.
- •65.Асимптоты графика ф-и.
- •66.Общая схема исследования ф-и и построение графика.
27.Прямая линия на плоскости.
В аналитической геометрии линия на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению F(x,y)=0. При этом на функцию F должны быть наложены ограничения так, чтобы, с одной стороны, это уравнение имело бесконечное множество решений и, с другой стороны, чтобы это множество решений не заполняло “куска плоскости”. Важный класс линий составляют те, для которых функция F(x,y) есть многочлен от двух переменных, в этом случае линия, определяемая уравнением F(x,y)=0, называется алгебраической. Алгебраические линии, задаваемые уравнением первой степени, cуть прямые. Уравнение второй степени, имеющее бесконечное множество решений, определяет эллипс, гиперболу, параболу или линию, распадающуюся на две прямые.
Пусть на плоскости задана прямоугольная декартова система координат. Прямая на плоскости может быть задана одним из уравнений:
28.Исследование общего ур-я прямой.
Общее уравнение
Ax
+ By + C (
> 0).
Вектор
=
(А; В) - нормальный вектор прямой.
В
векторном виде: + С = 0, где - радиус-вектор
произвольной точки на прямой (рис. 4.11).
Частные случаи:
1) By + C = 0 - прямая параллельна оси Ox;
2) Ax + C = 0 - прямая параллельна оси Oy;
3) Ax + By = 0 - прямая проходит через начало координат;
4) y = 0 - ось Ox;
5) x = 0 - ось Oy.
29.Ур-е в различных формах: через две точки, ур-е в отрезках, каноническое ур-е, ур-е через точку и известный угловой коэффициент, нормальное ур-е прямой.
Уравнение прямой в отрезках
где a, b - величины отрезков, отсекаемых прямой на осях координат.
Нормальное уравнение прямой (рис. 4.11)
где
-
угол, образуемый нормально к прямой и
осью Ox; p - расстояние от начала координат
до прямой.
Векторно-параметрическое уравнение прямой
где
-
фиксированная точка, лежащая на прямой;
-
направляющий вектор (см. рис. 4.11).
В координатах (параметрические уравнения):
Каноническое уравнение прямой
Уравнение прямой по двум точкам (рис. 4.12)
или
или
Уравнение
прямой по точке и угловому коэффициенту
(рис. 4.12)
или
где
b
- величина отрезка, отсекаемого прямой
на оси Oy.
30.Угол между двумя прямыми.
пусть заданы две пересекающиеся линии и не парал. Осям координат.
За угол между прямыми принимают острый угол.
tgα=k1, tgβ=k2, ϕ=β-α,
угол между прямыми это угол на который нужно повернуть L1 до совпадения с одним из направления L2 (этот угол не еденственен).
Угол между двумя прямыми:
Если прямые параллельны, то k1=k2 и b1≠b2
Если прямые перпендикулярны, то k1*k2=-1
Если прямые пересекаются, то k1≠k2
Если прямые совпадают, то k1=k2 и b1=b2
31.Ур-е параллельности и перпендикулярности двух прямых.
Условия параллельности двух прямых:
а) Если прямые заданы уравнениями с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:
k1 = k2.
б) Для случая, когда прямые заданы уравнениями в общем виде , необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.
Условия перпендикулярности двух прямых:
а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.
Это условие может быть записано также в виде
k1k2 = -1. (11)
б) Если уравнения прямых заданы в общем виде (6), то условие их перпендикулярности (необходимое и достаточное) заключается в выполнении равенства
A1A2 + B1B2 = 0. (12)