- •1)Развитие представлений о строении атома.
- •2)Двойственная природа электрона. Квантовые числа
- •Квантовые числа
- •3)Принципы заполнения орбиталей
- •4)Химическая связь: виды, причины образования, основные характеристики
- •5)Ковалентная химическая связь. Мвс. Свойства ковалентной связи.
- •6)Ковалентная связь. Ммо
- •Сравнительная характеристика ммо и мвс
- •7)Ионная связь. Металлическая связь. Донорно-акцепторная связь.
- •8)Водородная связь. Межмолекулярные взаимодействия.
- •9)Агрегатные состояния вещества.
- •10)Кристаллические вещества.
- •11) Классификация кристаллов по типу связей. Жидкие кристаллы.
- •12)Атомные нарушения структуры кристалла.
- •13)Термодинамическме системы и параметры. Основные понятия.
- •14)Первое начало термодинамики.
- •15)Термохимия. Тепловой эффект. Закон Гесса и следствия из него.
- •16) Второе начало термодинамики. Энтропия.
- •17)Энергия Гиббса, Гельмгольца. Критерии направленности химических процессов.
- •18)Обратимые и необратимые химические реакции. Константа химического равновесия.
- •19)Химическое равновесие. Принцип Ле-Шателье.
- •2)Влияние давления.
- •3)Влияние температуры.
- •20)Химическая кинетика. Основные понятия. Закон действующих масс. Молекулярность и порядок реакции.
- •Скорость гомогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени в единице объема.
- •Cкорость гетерогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности.
- •16) Второе начало термодинамики. Энтропия.
- •17)Энергия Гиббса, Гельмгольца. Критерии направленности химических процессов.
- •18)Обратимые и необратимые химические реакции. Константа химического равновесия.
- •19)Химическое равновесие. Принцип Ле-Шателье.
- •2)Влияние давления.
- •3)Влияние температуры.
- •20)Химическая кинетика. Основные понятия. Закон действующих масс. Молекулярность и порядок реакции.
- •Скорость гомогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени в единице объема.
- •Cкорость гетерогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности.
- •16) Второе начало термодинамики. Энтропия.
- •17)Энергия Гиббса, Гельмгольца. Критерии направленности химических процессов.
- •18)Обратимые и необратимые химические реакции. Константа химического равновесия.
- •19)Химическое равновесие. Принцип Ле-Шателье.
- •2)Влияние давления.
- •3)Влияние температуры.
- •20)Химическая кинетика. Основные понятия. Закон действующих масс. Молекулярность и порядок реакции.
- •Скорость гомогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени в единице объема.
- •Cкорость гетерогенной реакции - количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности.
- •Подвод реагентов к электроду;
- •Э/х реакция, которая включает в себя и химические реакции;
- •Отвод продуктов реакции от электрода.
- •48. Коррозия металлов. Классификация коррозионных процессов.
- •Подвод коррозион. Среды или отдельных ее компонентов к поверхности металла.
- •Взаимодействие среды с металлом.
- •Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая). Классификация коррозионных процессов:По условиям протекания.
- •Подвод реагентов к электроду;
- •Э/х реакция, которая включает в себя и химические реакции;
- •Отвод продуктов реакции от электрода.
- •48. Коррозия металлов. Классификация коррозионных процессов.
- •Подвод коррозион. Среды или отдельных ее компонентов к поверхности металла.
- •Взаимодействие среды с металлом.
- •Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая). Классификация коррозионных процессов:По условиям протекания.
48. Коррозия металлов. Классификация коррозионных процессов.
Коррозия металлов – разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.
Коррозия металла - процесс самопроизвольный, всегда негативный с точки зрения промышленной практики. Однако можно привести примеры, когда коррозия играет положительную роль и преднамеренно провоцируется - например, при кислотной очистке металла. .В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин “коррозия” употреблять не следует.
Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.
ОСНОВЫ ТЕОРИИ КОРРОЗИИ
Любой коррозионный процесс является многостадийным.
Подвод коррозион. Среды или отдельных ее компонентов к поверхности металла.
Взаимодействие среды с металлом.
Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая). Классификация коррозионных процессов:По условиям протекания.
газовая - протекает в газах при высокой температуре, атмосферная - во влажной атмосфере воздуха, жидкостная - в растворах электролитов и неэлектролитов, подземная - под землей, биокоррозия - под воздействием микроорганизмов, структурная - связана с неоднородностью сплава, контактная - возникает в месте контакта двух металлов, коррозионное растрескивание - коррозия металла, развивающаяся в зоне действия механических напряжений; коррозия при трении (эррозионная коррозия)- разрушение металла при одновременном воздействии коррозионной среды и сил трения; кавитационная коррозия - разрушение металла при одновременном коррозионном и ударном воздействии агрессивной среды (коррозия лопастей, гребных винтов).
По типу разрушений. По типу разрушений коррозия бывает сплошной и местной.
1. При равномерном распределении коррозионных разрушений по всей поверхности металла коррозию называют равномерной или сплошной.
Сплошная. а) равномерная, б) избирательная, в) неравномерная.
Сплошная коррозия не представляет собой опасности для конструкций и аппаратов, особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Её последствия могут быть сравнительно легко учтены.
2. Если же значительная часть поверхности металла свободна от коррозии и последняя сосредоточена на отдельных участках, то ее называют местной. Местная коррозия гораздо опаснее сплошной, хотя потери металла могут быть и небольшими. Она проникает вглубь изделия. Местная:а)пятнами,б) язвами,в) точечная,г) нитевиднаяд) щелевая е) контактная ж) межкрист. Кор..Электрохимическая коррозия является результатом протекания сопряженных электродных процессов и возникает при контакте металлов с электролитами (на воздухе, в почве, в растворах электролитов и т.п.).
Химическая коррозия возможна. Причиной коррозии является работа микрогальванических элементов на поверхности металла. Эти элементы возникают вследствие неоднородности поверхности металлов (наряду с участками основного металла, имеются включения примесей других металлов и различных химических соединений; по поверхности неравномерно распределены защитные пленки; различны физические свойства отдельных металлических кристаллов).
50. Химическая коррозия металлов - процесс разрушения металла под действием внешней среды, вступающей с ним в химическое взаимодействие.
Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Она основана на реакции между металлом и агрессивным реагентом. Примером химической коррозии служат ржавление железа и покрытие патиной бронзы. В промышленном производстве металлы нередко нагреваются до высоких температур. В таких условиях химическая коррозия ускоряется. Это типичный продукт химической коррозии.К химической коррозии относят: а) коррозию в жидкостях - неэлектролитах;
б) газовую коррозию - коррозию при контакте с сухими газами при высоких температурах. Коррозия металлов в жидкостях - неэлектролитах
К жидкостям - неэлектролитам, т.е. неэлектропроводным жидким средствам, относятся жидкости органического происхождения: спирты, бензол, фенол, хлороформ, тетрахлорид углерода, нефть, бензин и т.д., а также ряд жидкостей неорганического происхождения: расплавленная сера, жидкий бром и др. В чистом виде органические растворители и входящие в состав нефти и жидких топлив углеводороды слабо реагируют с металлами, но в присутствии даже незначительного количества примесей процессы взаимодействия резко интенсифицируются. Ускоряют коррозионные процессы содержащиеся в нефти серосодержащие соединения (сероводород, меркаптаны а также элементарная сера). Меркаптаны (R–SH) вызывают коррозию меди, никеля, серебра, свинца, олова и других металлов с образованием меркаптидов.
Содержащийся в нефти сероводород взаимодействует с железом, свинцом, медью, серебром с образованием сульфидов: 4Ag + 2 H2S+ O2 = 2 Ag2S + 2 H2O.
Присутствие воды увеличивает коррозионную активность сырой нефти, содержащей тиоспирты и сероводород. Бензин прямой перегонки при отсутствии воды практически не оказывает коррозионного воздействия на сплавы черных металлов. Крекинг - бензины при взаимодействии с металлами (Fе, Cu, Мg, Рb, Zn) осмоляются, кислотность среды возрастает, что и способствует коррозии.
Установлено, что коррозии железа способствует наличие в нём серы. Античные предметы, изготовленные из железа, устойчивы к коррозии именно благодаря низкому содержанию в этом железе серы. Сера в железе обычно содержится в виде сульфидов FeS и других. В процессе коррозии сульфиды разлагаются с выделением сероводорода H2S, который является катализатором коррозии железа.
Сера в расплавленном состоянии реагирует практически со всеми металлами, заметно разрушает олово, свинец, медь, меньше - углеродистые стали и титан и незначительно - алюминий.
Защиту металлических конструкций, работающих в среде жидкостей - неэлектролитов, ведут либо подбором устойчивых в данной среде металлических конструкционных металлов (например, для оформления процессов каталитического и термического крекинга нефти применяют высокохромистые стали), либо нанесением специальных защитных покрытий (в частности, для работы в среде неэлектролитов, содержащих соединения серы, изделия покрывают алюминием. Газовая коррозия
Практически очень важной разновидностью химической коррозии является газовая – взаимодействие металлов при повышенных температурах с такими активными газообразными веществами, как O2, H2S, SO2, галогены, водяные пары и др.
Газовая коррозия - наиболее распространенный вид химической коррозии. Это процесс разрушения металлов и сплавов в результате химического взаимодействия с газами при высоких температурах, когда невозможна конденсация влаги на поверхности металла.
Причина газовой коррозии металлов - их термодинамическая неустойчивость в данной газовой среде при определенных внешних условиях (температуре и давлении).
Многие ответственные детали инженерных конструкций сильно разрушаются от газовой коррозии (лопатки газовых турбин, сопла ракетных двигателей, элементы электронагревателей, колосники, арматура печей). Большие потери от газовой коррозии (угар металла) несет металлургическая промышленность.
Стойкость против газовой коррозии повышается при введении в состав сплава различных добавок (хрома, алюминия, кремния). Добавки алюминия, бериллия и магния к меди повышают ее сопротивление газовой коррозии в окислительных средах.
Для защиты железных и стальных изделий от газовой коррозии поверхность изделия покрывают алюминием (алитирование).
Свинец (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. Свинец - тяжелый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный Свинец состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238U, 235U и 232Th. При ядерных реакциях образуются многочисленные радиоактивные изотопы Свинца.
Историческая справка. Свинец был известен за 6-7 тысяч лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Римляне пользовались свинцовыми трубами для водопроводов. Алхимики называли Свинец Сатурном и обозначали его знаком этой планеты. Соединения Свинец - "свинцовая зола" РbО, свинцовые белила 2РbСО3·Рb(ОН)2 применялись в Древней Греции и Риме как составные части лекарств и красок. Свинец начали применяют как материал для пуль. Ядовитость Свинца отметили еще в 1 веке н. э. греческий врач Диоскорид и Плиний Старший.
Распространение Свинца в природе. Содержание Свинца в земной коре (кларк) 1,6·10-3% по массе. Образование в земной коре около 80 минералов, содержащих Свинец (главный из них галенит PbS). В зонах окисления полиметаллических руд образуются многочисленные (около 90) вторичные минералы: сульфаты (англезит PbSO4), карбонаты (церуссит РbCO3), фосфаты [пироморфит Рb5(РО4)3Сl]. В биосфере Свинец в основном рассеивается, его мало в живом веществе (5·10-5%), морской воде (3·10-9%). Из природных вод Свинец отчасти сорбируется глинами и осаждается сероводородом, поэтому он накапливается в морских илах с сероводородным заражением и в образовавшихся из них черных глинах и сланцах.
Физические свойства Свинца. Свинец кристаллизуется в гранецентрированной кубической решетке (а = 4,9389Å), аллотропических модификаций не имеет. Атомный радиус 1,75Å, ионные радиусы: Рb2+ 1,26Å, Рb4+ 0,76Å; плотность 11,34 г/см3(20 °С); tпл 327,4 °С; tкип 1725 °С; удельная теплоемкость при 20 °С 0,128 кДж/(кг·К) [0,0306 кал/г·°С]| теплопроводность 33,5 вт/(м·К)[0,08 кал/см·сек·°С)]; температурный коэффициент линейного расширения 29,1·10-6 при комнатной температуре; твердость по Бринеллю 25-40 Мн/м2 (2,5-4 кгс/мм2); предел прочности при растяжении 12-13 Мн/м2, при сжатии около 50 Мн/м2; относительное удлинение при разрыве 50-70%. Наклеп не повышает механических свойств Свинца, так как температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). Свинец диамагнитен, его магнитная восприимчивость -0,12·10-6. При 7,18 К становится сверхпроводником.
Химические свойства Свинца. Конфигурация внешних электронных оболочек атома Pb 6s26р2, в соответствии с чем он проявляет степени окисления +2 и +4. Свинец сравнительно мало активен химически. Металлический блеск свежего разреза Свинца постепенно исчезает на воздухе вследствие образования тончайшей пленки РbО, предохраняющей от дальнейшего окисления. С кислородом образует ряд оксидов Рb2О, РbО, РbО2, Рb3О4 и Рb2О3. В отсутствие О2 вода при комнатной температуре на Свинец не действует, но он разлагает горячий водяной пар с образованием оксида Свинца и водорода. Соответствующие оксидам РbО и РbО2 гидрооксиды Рb(ОН)2 и Рb(ОН)4 имеют амфотерный характер.
Соединение Свинца с водородом РbН4 получается в небольших количествах при действии разбавленной соляной кислоты на Mg2Pb. PbH4 - бесцветный газ, который очень легко разлагается на Pb и Н2. При нагревании Свинец соединяется с галогенами, образуя галогениды РbХ2 (X -галоген). Все они малорастворимы в воде. Получены также галогениды РbХ4: тетрафторид PbF4 - бесцветные кристаллы и тетрахлорид РbСl4- желтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя F2 или Cl2; гидролизуются водой. С азотом Свинец не реагирует. Азид свинца Pb(N3)2 получают взаимодействием растворов азида натрия NaN3 и солей Рb (II); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на Pb и N2 со взрывом. Сера действует на Свинец при нагревании с образованием сульфида PbS - черного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей Pb (II); в природе встречается в виде свинцового блеска - галенита.
В ряду напряжений Pb стоит выше водорода (нормальные электродные потенциалы соответственно равны -0,126 в для Рb = Рb2+ + 2е и +0,65 в для Pb = Pb4+ + 4е). Однако Свинец не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения Н2 на Pb, а также образования на поверхности металла защитных пленок трудно-растворимых хлорида РbCl2 и сульфата PbSO4. Концентрированные H2SO4 и НCl при нагревании действуют на Pb, причем получаются растворимые комплексные соединения состава Pb(HSO4)2 и Н2[РbCl4]. Азотная, уксусная, а также некоторые органических кислоты (например, лимонная) растворяют Свинец с образованием солей Рb (II). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли Pb (IV) могут быть получены электролизом сильно подкисленных H2SO4 растворов солей Рb (II); важнейшие из солей Pb (IV)- сульфат Pb(SO4)2 и ацетат Рb(С2Н3О2)4. Соли Pb (IV) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО3)2- и (РbО4)4-, хлороплюмбатов (РbCl6)2-, гидроксоплюмбатов [Рb(ОН)6]2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х2[Рb(ОН)4].
Получение Свинца. Металлический Свинец получают окислительным обжигом PbS с последующим восстановлением РbО до сырого Pb ("веркблея") и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведется в агломерационных ленточных машинах непрерывного действия. При обжиге PbS: 2PbS + ЗО2 = 2РbО + 2SO2.
Кроме того, получается и немного сульфата PbSO4, который переводят в силикат PbSiO3, для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (Cu, Zn, Fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из оксидов РbО, CuO, ZnO, Fe2O3. Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы ("фурмы") подают воздух под давлением. Кокс и оксид углерода (II) восстанавливают РbО до Pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:
СаСО3 = СаО + СО2 2РbSiO3 + 2СаО + С = 2Рb + 2CaSiO3+ CO2.
Оксиды Zn и Fe частично переходят в ZnSiO3 и FeSiO3, которые вместе с CaSiO3 образуют шлак, всплывающий на поверхность. Оксиды Свинца восстанавливаются до металла. Сырой Свинец содержит 92-98% Pb, остальное - примеси Cu, Ag (иногда Au), Zn, Sn, As, Sb, Bi, Fe. Примеси Cu и Fe удаляют зейгерованием. Для удаления Sn, As, Sb через расплавленный металл продувают воздух. Выделение Ag (и Au) производится добавкой Zn, который образует "цинковую пену", состоящую из соединений Zn с Ag (и Au), более легких, чем Рb, и плавящихся при 600-700 °C. Избыток Zn удаляют из расплавленного Рb пропусканием воздуха, водяного пара или хлора. Для очистки от Bi к жидкому Рb добавляют Са или Mg, дающие трудноплавкие соединения Ca3Bi2 и Mg3Bi2. Рафинированный этими способами Свинец содержит 99,8-99,9% Рb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%.
Применение Свинца. Свинец широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. Свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). Большие количества Свинца идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе Свинца изготовляют многие свинцовые сплавы. Оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (желтый крон) и основные карбонат Свинца (свинцовые белила) - ограниченно применяемые пигменты. Хромат Свинца - окислитель, используется в аналитической химии. Азид и стифиат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат Свинца служит индикатором для обнаружения H2S. В качестве изотопных индикаторов используются 204Рb (стабильный) и 212Рb (радиоактивный).
При повышении уровня Свинца в окружающей среде возрастает его отложение в костях, волосах, печени. Отравления Свинцом и его соединениями возможны при добыче руд, выплавке Свинец, при производстве свинцовых красок, в полиграфии, гончарном, кабельном производствах, при получении и применении тетраэтилсвинца и др. Бытовые отравления возникают редко и наблюдаются при употреблении в пищу продуктов, которые длительно хранили в глиняной посуде, покрытой глазурью, содержащей свинцовый сурик или глет. Свинец и его неорганические соединения в виде аэрозолей проникают в организм в основном через дыхательные пути, в меньшей степени - через желудочно-кишечный тракт и кожу. В крови Свинец циркулирует в виде высокодисперсных коллоидов - фосфата и альбумината.. Отравления могут быть скрытыми (так называемое носительство), протекать в легкой, средней тяжести и тяжелой формах.
Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжелый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120Sn наиболее распространен (около 33%).
Историческая справка. Сплавы Олова с медью - бронзы были известны уже в 4-м тысячелетии до н. э., а чистый металл во 2-м тысячелетии до н. э. В древнем мире из Олова делали украшения, посуду, утварь. Происхождение названий "stannum" и "олово" точно не установлено.
Распространение Олова в природе. Олово - характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10-4% по массе, в кислых изверженных породах 3·10-4'%, а в более глубоких основных 1,5·10-4%; еще меньше Олова в мантии.
Физические свойства Олова. Олово имеет две полиморфные модификации. Кристаллическая решетка обычного β-Sn (белого Олово) тетрагональная с периодами а = 5,813Å, с = 3,176Å; плотность 7,29 г/см3. При температурах ниже 13,2 °С устойчиво α-Sn (серое Олово) кубической структуры типа алмаза; плотность 5,85 г/см3. Переход β->α сопровождается превращением металла в порошок. tпл 231 ,9 °С, tкип 2270 °С. Температурный коэффициент линейного расширения 23·10-6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10-6 ом·м, то есть 11,5·10-6 ом·см. Предел прочности при растяжении 16,6 Мн/м2 (1,7 кгс/мм2); относительное удлинение 80-90% ; твердость по Бринеллю 38,3-41,2 Мн/м2(3,9-4,2 кгс/мм2). При изгибании прутков Олова слышен характерный хруст от взаимного трения кристаллитов.
Химические свойства Олова. В соответствии с конфигурацией внешних электронов атома 5s25р2 Олово имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (II) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °С Олово практически не окисляется: его предохраняет тонкая, прочная и плотная пленка SnO2. По отношению к холодной и кипящей воде Олово устойчиво. Стандартный электродный потенциал Олова в кислой среде равен -0,136 в. Из разбавленных НCl и H2SO4 на холоду Олово медленно вытесняет водород, образуя соответственно хлорид SnCl2 и сульфат SnSO4. В горячей концентрированной H2SO4 при нагревании Олово растворяется, образуя Sn(SO4)2 и SO2. Холодная (0°С) разбавленная азотная кислота действует на Олово по реакции: 4Sn + 10HNO3 = 4Sn(NO3)2 + NH4NO3 + 3H2O.
При нагревании с концентрированной HNO3 (плотность 1,2-1,42 г/мл) Олово окисляется с образованием осадка метаоловянной кислотыH2SnO3, степень гидротации которой переменна: 3Sn + 4HNO3 + n H2O = 3H2SnO3·nH2O + 4NO. При нагревании Олова в концентрированных растворах щелочей выделяется водород и образуется гексагидростаниат: Sn + 2KOH + 4H2O = K2[Sn(OH)6] + 2H2.
Кислород воздуха пассивирует Олово, оставляя на его поверхности пленку SnO2. Химически оксид (IV) SnO2 очень устойчив, а оксид (II) SnO быстро окисляется, его получают косвенным путем. SnO2 проявляет преимущественно кислотные свойства, SnO - основные. С водородом олово непосредственно не соединяется; гидрид SnH4 образуется при взаимодействии Mg2Sn с соляной кислотой: Mg2Sn + 4HCl = 2MgCl2 + SnH4.
Это бесцветный ядовитый газ, tкип -52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H2 в течение нескольких суток, а выше 150°С - мгновенно. Образуется также при действии водорода в момент выделения на соли Олова, например: SnCl2 + 4HCl + 3Mg = 3MgCl2 + SnH4.
С галогенами олово дает соединения состава SnX2 и SnX4. Первые солеобразны и в растворах дают ионы Sn2+, вторые (кроме SnF4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием Олова с сухим хлором (Sn + 2Cl2 = SnCl4) получают тетрахлорид SnCl4; это бесцветная жидкость, хорошо растворяющая серу, фосфор, иод. Раньше по приведенной реакции удаляли Олово с вышедших из строя луженых изделий. Сейчас способ мало распространен из-за токсичности хлора и высоких потерь Олова.
Получение Олова. Промышленное получение Олова целесообразно, если содержание его в россыпях 0,01% , в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.
Применение Олова. До 40% Олово идет на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов. Оксид SnO2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na2SnO3·3H2O используется в протравном крашении тканей. Кристаллический SnS2 ("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb3Sn - один из наиболее используемых сверхпроводящих материалов.
Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
Историческая справка. Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.
Распространение Кремния в природе. По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.
Физические свойства Кремния. Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза.. Кремний плавится при 1417 °С, кипит при 2600 °С. Кремний хрупкий материал; заметная пластическая деформация начинается при t> 800°С. Кремний – полупроводник.
Химические свойства Кремния.В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома. Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si - О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si - Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2. Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO2. Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX4. Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН3Сl) с образованием органогалосиланов [например, Si(СН3)3Cl], служащих для синтеза многочисленных кремнийорганических соединений.
Кремний образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).
Получение Кремния. Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого Кремния Это требует предварительного синтеза чистейших исходных соединений Кремния, из которых Кремний извлекают путем восстановления или терм. разложения. Чистый полупроводниковый Кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический.
Применение Кремния. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике,
Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.
Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз..
Кремний в организме. Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.
Алюминий, Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154.
Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).
Простое вещество алюминий — мягкий легкий серебристо-белый металл.
Свойства алюминия: алюминий — типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10–5 К–1. Стандартный электродный потенциал Al3+/Al — 1,663В.
Алюминий - серебристо-белый легкий металл; кристаллическая решетка кубическая гранецентрированная (а = 0,40403 нм, z = 4, пространственная группа Fт3т). Т. пл. 660 °С, т. кип. ок. 2452°С; При охлаждении ниже 120 К прочностные св-ва алюминия в отличие от большинства металлов возрастают, а пластические не изменяются.
На воздухе алюминий покрывается тонкой прочной беспористой пленкой А12О3, защищающей от дальнейшего окисления и обусловливающей его высокую коррозионную стойкость. По этой же причине алюминий не реагирует с концентрированной HNO3. Технический алюминий легко взаимодействует с разбавленными соляной кислотой H2SO4 и HNO3. Алюминий легко реагирует с щелочами, давая алюминаты.
Алюминий — типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660 °C, температура кипения около 2450 °C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10-5 К-1. Стандартный электродный потенциал Al3+/Al –1,663В.
С остальными кислотами алюминий активно реагирует:
6НСl + 2Al = 2AlCl3 + 3H2, 3Н2SO4 + 2Al = Al2(SO4)3 + 3H2.
Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка: Al2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4].
Затем протекают реакции: 2Al + 6H2O = 2Al(OH)3 + 3H2, NaOH + Al(OH)3 = Na[Al(OH)4], или суммарно: 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2, и в результате образуются алюминаты: Na[Al(OH)4] — алюминат натрия (тетрагидроксоалюминат натрия), К[Al(OH)4] — алюминат калия (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие: Na[Al(OH)4(Н2О)2] и К[Al(OH)4(Н2О)2].
При нагр. Al реагирует с галогенами:2Al + 3Cl2 = 2AlCl3, 2Al + 3 Br2 = 2AlBr3.
При нагревании: 2Al + 3S = Al2S3, : Al2S3 + 6Н2О = 2Al(ОН)3 + 3Н2S.
С водородом алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН3)х — сильнейший восстановитель.
В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al2О3.
Высокая прочность связи в Al2О3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:3Fe3O4 + 8Al = 4Al2O3 + 9Fe и даже 3СаО + 2Al = Al2О3 + 3Са. Такой способ получения металлов называют алюминотермией.
Амфотерному оксиду Al2О3 соответствует амфотерный гидроксид — аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl2O3·yH2O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH)3.
В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями: Al2(SO4)3 + 6NaOH = 2Al(OH)3 + 3Na2SO4,или за счет добавления соды к раствору соли алюминия:2AlCl3 + 3Na2CO3 + 3H2O = 2Al(OH)3Ї + 6NaCl + 3CO2,а также добавлением раствора аммиака к раствору соли алюминия: AlCl3 + 3NH3·H2O = Al(OH)3Ї + 3H2O + 3NH4Cl.
Германий (лат. Germanium), Ge, химический элемент IV группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твердое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Германия предсказал в 1871 году Д. И. Менделеев и назвал этот неизвестный еще элемент экасилицием из-за близости свойств его с кремнием. В 1886 году немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Германием в честь своей страны; Германий оказался вполне тождествен экасилицию. До второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство Германия возникло в связи с развитием полупроводниковой электроники.
Общее содержание Германий в земной коре 7·10-4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ge)S6 и другие. Основная масса Германия рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых оксидных минералах (хромите, магнетите, рутиле и других), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.
Физические свойства Германия. Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Плотность твердого Германий 5,327 г/см3 (25°С); жидкого 5,557 (1000°С); tпл 937,5°С; tкип около 2700°С; коэффициент теплопроводности ~60 Вт/(м·К),или 0,14 кал/(см·сек·град) при 25°С. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Твердость Германия по минералогической шкале 6-6,5; коэффициент сжимаемости (в интервале давлений 0-120 Гн/м2, или 0-12000 кгс/мм2) 1,4·10-7м2/мн (1,4·10-6 см2/кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10-19дж или 0,69 эв (25°С); удельное электросопротивление Германия высокой чистоты 0,60 ом·м (60 ом·см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см2/в·сек (25°С) (при содержании примесей менее 10-8%). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.
Химические свойства Германия. В химические соединениях Германий обычно проявляет валентности 2 и 4, причем более стабильны соединения 4-валентного Германия. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Германий окисляется до оксидов GeO и GeO2. Оксид Германия (IV) - белый порошок с tпл 1116°C; растворимость в воде 4,3 г/л (20°С). По химическиv свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO3·nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с других оксидами могут быть получены производные германиевой кислоты - германаты металлов (Li2GeO3, Na2GeO3 и другие) - твердые вещества с высокими температурами плавления.
При взаимодействии Германия с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии СО). Одно из наиболее важных соединений Германия тетрахлорид GeCl4 - бесцветная жидкость; tпл -49,5°С; tкип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированного оксида (IV). Получается хлорированием металлического Германия или взаимодействием GeO2 с концентрированной НСl. Известны также дигалогениды Германия общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Германия (например, СеОСl2).
Сера энергично взаимодействует с Германием при 900-1000°С с образованием дисульфида GeS2 - белого твердого вещества, tпл 825°С. Описаны также моносульфид GeS и аналогичные соединения Германия с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Германием при 1000-1100°С с образованием гермина (GeH)Х - малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда GenH2n+2 вплоть до Ge9H20. Известен также гермилен состава GeH2. С азотом Германий непосредственно не реагирует, однако существует нитрид Gе3N4, получающийся при действии аммиака на Германий при 700-800°С. С углеродом Германий не взаимодействует. Германий образует соединения со многими металлами - германиды.
Известны многочисленные комплексные соединения Германия, которые приобретают все большее значение как в аналитической химии Германия, так и в процессах его получения. Германий образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и другими). Получены гетерополикислоты Германия. Так же, как и для других элементов IV группы, для Германия характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (С2Н5)4Ge3.
Получение Германия. В промышленного практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001-0,1% Германия. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Извлечение Германия из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью ее с хлором в водной среде или других хлорирующими агентами с получением технического GeCl4. Для очистки GеСl4применяют ректификацию и экстракцию примесей концентрированной НСl. 2) Гидролиз GeCl4 и прокаливание продуктов гидролиза до получения GeO2. 3) Восстановление GeO2 водородом или аммиаком до металла. Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой или методом Чохральского.
Применение Германия. Германий - один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения Германия является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мкм. Перспективны для практическое использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и другие соединения Германия.
Германий (лат. Germanium), Ge, химический элемент IV группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твердое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Германия предсказал в 1871 году Д. И. Менделеев и назвал этот неизвестный еще элемент экасилицием из-за близости свойств его с кремнием. В 1886 году немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Германием в честь своей страны; Германий оказался вполне тождествен экасилицию. До второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство Германия возникло в связи с развитием полупроводниковой электроники.
Общее содержание Германий в земной коре 7·10-4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ge)S6 и другие. Основная масса Германия рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых оксидных минералах (хромите, магнетите, рутиле и других), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.
Физические свойства Германия. Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Плотность твердого Германий 5,327 г/см3 (25°С); жидкого 5,557 (1000°С); tпл 937,5°С; tкип около 2700°С; коэффициент теплопроводности ~60 Вт/(м·К),или 0,14 кал/(см·сек·град) при 25°С. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Твердость Германия по минералогической шкале 6-6,5; коэффициент сжимаемости (в интервале давлений 0-120 Гн/м2, или 0-12000 кгс/мм2) 1,4·10-7м2/мн (1,4·10-6 см2/кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10-19дж или 0,69 эв (25°С); удельное электросопротивление Германия высокой чистоты 0,60 ом·м (60 ом·см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см2/в·сек (25°С) (при содержании примесей менее 10-8%). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.
Химические свойства Германия. В химические соединениях Германий обычно проявляет валентности 2 и 4, причем более стабильны соединения 4-валентного Германия. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Германий окисляется до оксидов GeO и GeO2. Оксид Германия (IV) - белый порошок с tпл 1116°C; растворимость в воде 4,3 г/л (20°С). По химическиv свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO3·nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с других оксидами могут быть получены производные германиевой кислоты - германаты металлов (Li2GeO3, Na2GeO3 и другие) - твердые вещества с высокими температурами плавления.
При взаимодействии Германия с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии СО). Одно из наиболее важных соединений Германия тетрахлорид GeCl4 - бесцветная жидкость; tпл -49,5°С; tкип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированного оксида (IV). Получается хлорированием металлического Германия или взаимодействием GeO2 с концентрированной НСl. Известны также дигалогениды Германия общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Германия (например, СеОСl2).
Сера энергично взаимодействует с Германием при 900-1000°С с образованием дисульфида GeS2 - белого твердого вещества, tпл 825°С. Описаны также моносульфид GeS и аналогичные соединения Германия с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Германием при 1000-1100°С с образованием гермина (GeH)Х - малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда GenH2n+2 вплоть до Ge9H20. Известен также гермилен состава GeH2. С азотом Германий непосредственно не реагирует, однако существует нитрид Gе3N4, получающийся при действии аммиака на Германий при 700-800°С. С углеродом Германий не взаимодействует. Германий образует соединения со многими металлами - германиды.
Известны многочисленные комплексные соединения Германия, которые приобретают все большее значение как в аналитической химии Германия, так и в процессах его получения. Германий образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и другими). Получены гетерополикислоты Германия. Так же, как и для других элементов IV группы, для Германия характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (С2Н5)4Ge3.
Получение Германия. В промышленного практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001-0,1% Германия. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Извлечение Германия из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью ее с хлором в водной среде или других хлорирующими агентами с получением технического GeCl4. Для очистки GеСl4применяют ректификацию и экстракцию примесей концентрированной НСl. 2) Гидролиз GeCl4 и прокаливание продуктов гидролиза до получения GeO2. 3) Восстановление GeO2 водородом или аммиаком до металла. Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой или методом Чохральского.
Применение Германия. Германий - один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения Германия является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мкм. Перспективны для практическое использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и другие соединения Германия.
21) Факторы, влияющие на скорость химической реакции!
Закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в соответствующих степенях.
где kT – константа скорости при данной температуре (К);
EA – энергия активации; R – газовая постоянная;
Т – температура, К; k0 – предэкспоненциальный множитель.
Более точно отражает зависимость константы скорости реакции от температуры уравнение, предложенное в 1889 г. шведским физико-химиком С.А. Аррениусом
Катализаторы – это вещества, которые изменяют скорость химической реакции, но не входят в состав продуктов реакции.
Катализ – явление изменения скорости химической реакции в присутствии веществ, состояние и количество которых после реакции остаются неизменными.
Различают положительный и отрицательный катализ (соответственно увеличение и уменьшение скорости реакции), хотя часто под термином "катализ" подразумевают только положительный катализ; отрицательный катализ называют ингибированием.
Основные положения теории катализа:
1.Катализаторы применимы только для самопроизвольных процессов. 2.Катализаторы изменяют механизм процесса. 3.Катализаторы не меняют тепловой эффект процесса.
4.Катализаторы не влияют на химическое равновесие. 5.Катализаторы селективны. Специфичность катализатора заключается в его способности ускорять только одну реакцию или группу однотипных реакций и не влиять на скорость других реакций. Так, например, многие переходные металлы (платина, медь, никель, железо и т.д.) являются катализаторами для процессов гидрирования; оксид алюминия катализирует реакции гидратации и т.д.
Селективность катализатора – способность ускорять одну из возможных при данных условиях параллельных реакций. Благодаря этому можно, применяя различные катализаторы, из одних и тех же исходных веществ получать различные продукты:
[Cu]: СО + Н2 ––> СН3ОН [Al2О3]: С2Н5ОН ––> С2Н4 + Н2О
[Ni]: СО + Н2 ––> СН4 + Н2О [Cu]: С2Н5ОН ––> СН3СНО + Н2
Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе.
Автокатализ – процесс каталитического ускорения химической реакции одним из её продуктов.
Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами.
Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы.
22) Кинетические уравнения реакций нулевого, первого, второго порядка. Период полураспада!
Формальная кинетика – раздел химической кинетики, в котором рассматривается количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентрации реагирующих веществ.
1) Реакции нулевого порядка. Нулевой порядок реакции указывает на независимость в данном случае скорости реакции от концентрации реагирующего вещества. Такая закономерность возможна, если:
а) концентрация реагента автоматически поддерживается постоянной, как, например, в насыщенном растворе, находящемся в контакте с избытком нерастворенного вещества;
б) когда скорость реакции определяется не концентрацией реагирующего вещества, которая оказывается достаточно большой и мало меняется в ходе процесса, а некоторыми другими ограничивающими факторами: количеством поглощенного света или количеством катализатора.
Период полураспада – это время, в течение которого распадется половина исходного вещества,
В реакциях нулевого порядка (Апродукты) скорость постоянна и не зависит от времени.
C
tg = k0
C0
t
2) Реакции первого порядка.
lnC
lnC0
t
3) Реакции второго порядка:
А+В продукты,
выражение скорости имеет вид =kCACB.
а) CA = C0Ax и CB = C0B x.
б) Если а = b и C0A= C0B
Период полураспада:
1/C
1/C0 tg = k
t
4) Реакции третьего порядка:
А+В+С продукты
a=b=c и C0A=C0B=C0C=C
23) Зависимость скорости реакции от температуры. Уравнение Аррениуса. Энергия активации.
Более точно отражает зависимость константы скорости реакции от температуры уравнение, предложенное в 1889 г. шведским ученым С.А. Аррениусом
где kT – константа скорости при данной температуре (К);
EA – энергия активации; R – газовая постоянная;
Т – температура, К; k0 – предэкспоненциальный множитель.
Энергия активации - минимальный запас энергии необходимый для того, чтобы реакция началась
Величину энергии активации можно определить 2 методами: графическим и аналитическим.
Графический – логарифмируя уравнение Аррениуса, получим:
lnK
LnK0
1/Т
Аналитический:
24) Скорость химической реакции в однородной среде. Константа скорости.
Скорость химической реакции - это величина, показывающая как изменяются концентрации исходных веществ или продуктов реакции за единицу времени.
Гомогенной называется система, состоящая из одной фазы. Например, помутнение раствора, вызываемое появлением серы, происходит во всем объеме. H2SO4 + Na2S2O3 = Na2SO4 + H2O + SO2 + S
Скорость гомогенной реакции количество вещества, вступившего в реакцию или образующегося в результате реакции за единицу времени в единице объема.
Средняя скорость гомогенной реакции, протекающей в статистических условиях, определяется как изменение концентрации веществ в единицу времени:
Чаще всего концентрацию выражают в моль/л.
Односторонняя реакция в статистических условиях: A B
Чтобы выражение для скорости было всегда положительным, необходимо
в правой части уравнения выбирать знак «+» или «-» в зависимости от того, по изменению какой концентрации (реагента или продукта) выполняется расчет.
В кинетике чаще используется понятие истинной (мгновенной) скорости реакции,
В каждый момент времени скорость реакции равна тангенсу угла наклона кривой с = f(t) в данной точке.
Константа скорости.
Константа скорости реакции (удельная скорость реакции) — коэффициент пропорциональности в кинетическом уравнении.
Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.
Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.
25.Зависимость скорости реакции от температуры. Теория активных столкновений и теория активированного комплекса.
Теория активных столкновений (ТАС)
Эта теория базируется на двух общих положениях:
Реакция осуществляется в момент столкновения двух молекул А и В;
Столкновение молекул приводит к химическому превращению
только в том случае, когда молекулы А и В обладают достаточно большим запасом энергии. Эта энергия необходима для преодоления действия сил отталкивания, проявляющихся при сближении любых валентно-насыщенных молекул. N
T1
T2 T2 > T1
Eакт
Еср Екр Е
А + В = АВ.
где Z0 – общее число столкновений
в 1 см3 в 1 секунду [см3/с]
Согласно теории Аррениуса, каждое столкновение активных молекул А и В должно приводить к образованию продукта реакции. Число активных столкновений описывается на основании уравнения Больцмана:
Теория активных столкновений построена на з-не:
где n A и nB – число молекул А и В в 1 см3;
dAB – средний эффективный диаметр при столкновении молекул разного вида (наименьшее расстояние между центрами столкновения молекул)
dAB=rA+rB (= сумме радиусов молекул [см]);
MА и МВ – молекулярные массы А и В соответственно [г/моль]
Согласно закону действующих масс
с учётом, что
[моль/см3]
Приравниваем выражения для скорости и получаем:
k0 =const
реакции нормальные если k0= 1014
реакции медленные если k0= 10-2 – 10-7
реакции быстрые к0>1014
Недостатки теории ТАС: несовпадение экспериментально и теоретически рассчитанных величин константы скорости реакции.
Теория активированного комплекса
В основе теории лежат следующие постулаты (положения):
а) протекание р-ии сущ-но не нарушает распределение молекул по состояниям;
б) движение ядер при элементарном акте реакции подчиняется законам классической механике;
в) исходные в-ва находятся в равновесии с активированным комплексом.
Критическая конфигурация – это конфигурация из реагирующих атомов или молекул, представляющих промежуточное состояние в элементарном акте химической реакции.
А+В А-ВАВ Например: Н2+I22НI
Н I H I H I
+
H I H I H I
реагенты активированный комплекс продукт
Активированные комплексы подвержены более интенсивным вращениям и колебаниям, чем любые другие молекулы.
Скорость разрушения активированных комплексов и скорость образования продуктов, т.е. скорость реакции пропорциональна числу активированных комплексов, разрушающихся за единицу времени в единице объема.
Преимущества теории активированного комплекса (ТАК):
ТАС может быть применима к реакциям протекающим в растворах, тогда как теория столкновений хорошо описывает только реакции в газовой фазе.
26)Гомогенный и гетерогенный катализ!
Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе.
В отсутствии катализатора бимолекулярная реакция протекает по схеме:
В присутствии катализатора реакция имеет другой механизм:
1) образование промежуточного соединения АК в результате обратимого взаимодействия между катализатором и одним из исходных веществ:
образование активированного комплекса в результате взаимодействия образовавшегося промежуточного соединения со вторым компонентом реакции:
образование конечных продуктов и регенерация катализатора:
Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:
1. Диффузия исходных веществ к поверхности катализатора.
2. Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:А + В + К ––> АВК
3. Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):АВК ––> АВК#
4. Распад активированного комплекса с образованием адсорбированных продуктов реакции:АВК# ––> СDК
5. Десорбция продуктов реакции с поверхности катализатора.СDК С + D + К
6. Отвод продуктов от поверхности катализатора путем диффузии.
Таким образом, и в гетерогенном катализе ускоряющее действие катализатора связано с понижением энергии активации, которое происходит за счет образования реагирующими веществами промежуточных поверхностных соединений на активных участках катализатора.
Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению.
Промотирование – увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции. СО + Н2 ––> СН4 + Н2О
Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов).
31) Закон Рауля и следствия из него.
Закон Рауля. Относительное понижение упругости пара растворителя над раствором равно мольной доле растворенного нелетучего компонента.
барометрическая формула Больцмана.
Следствия из закона Рауля:
1. Растворение нелетучего компонента в растворителе приводит к расширению температурной области существования жидкой фазы.
2. Понижение температуры замерзания и повышение температуры кипения прямо пропорциональны моляльной концентрации растворенного вещества.
3. Растворы, содержащие одинаковое число молей растворенных веществ в одинаковых молях растворителя, обнаруживают одно и то же понижение температуры замерзания и одно и то же повышение температуры кипения.
Δtкип=Э x Смоляльн, где Э – эбуллиоскопическая константа, +0,52.
Δtзам=К x Смоляльн, где К – криоскопическая константа, равная –1,86.
Эбуллиоскопическая константа – разница между температурой кипения раствора и температурой чистого растворителя.
Криоскопическая константа – разница между температурой замерзания раствора и температурой чистого растворителя.
32) Растворы электролитов. Теория электролитической диссоциации Аррениуса.
Электролиты – вещества, которые подвергаются электролитической диссоциации, и вследствие чего их расплавы или растворы проводят электрический ток.
К электролитам принадлежат все соли, а также кислотные, основные и амфотерные гидроксиды.
Раствор электролита представляет собой смесь молекул растворителя и сольватированных (ионы растворенного вещества, окруженные соответственно ориентированными диполями растворителя) молекул и ионов растворенного вещества. Относительное количество молекул, распавшихся на ионы, характеризующее степень диссоциации электролита α , зависит от природы растворителя, природы и концентрации электролита, температуры, давления и наличия других электролитов в растворе.
Процесс распада полярного вещества в растворе на ионы называют электролитической диссоциацией (ионного – ионизацией). По способности к электролитической диссоциации электролиты обычно подразделяют на сильные и слабые. К сильным электролитам обычно относят вещества, которые в растворе практически полностью диссоциированы на ионы. Слабыми электролитами считают вещества, степень диссоциации, которых невелика.
Теория электролитической диссоциации и основанная на ней классификация кислот и оснований в полной мере применимы лишь к водным растворам.
Списать с тетради!
35) Электропроводность растворов электролитов!
Электропроводность ("Каппа") раствора - величина, обратная его сопротивлению R, имеет размерность Ом-1. Для проводника постоянного сечения K=kS/l,где S - площадь сечения проводника; l - длина проводника;
Удельной электропроводностью ("каппа") раствора н-ся элект-ть слоя раствора длиной 1 см, заключенного между электродами площадью 1см2. Она выражается в Ом-1. см-1. В системе СИ удельная электропроводность измеряется в Ом-1. м-1.
Эквивалентной электропроводностью ("лямбда") называется электропроводность такого объема раствора, в котором содержится 1 г-экв растворенного вещества; при условии, что электроды находятся на расстоянии 1 см друг от друга, она выражается в Ом-1. см2. г-экв-1. Лямбда=k/C=kV,где V = 1/C - разведение (или разбавление) раствора, т.е. объем, в котором содержится 1 г-экв растворенного вещества, а C - эквивалентная концентрация (нормальность) раствора. В системе СИ эквивалентная электропроводность выражается в Ом-1. м2. кг-кв-1.
Эквивалентная электропроводность растворов электролитов возрастает с ростом разбавления раствора и при бесконечном разбавлении (т.е. при бесконечно малой концентрации) достигает предельного значения, которое называется эквивалентной электропроводностью раствора при бесконечном разведении.
В разбавленных растворах сильных электролитов выполняется эмпирический закон Кольрауша (закон квадратного корня): ,где и 0 - эквивалентная электропроводность раствора при концентрации С и при бесконечном разведении, A - константа (при данной температуре) для данного электролита и растворителя.
В растворах слабых электролитов лямбда и лямбда0 связаны со степенью диссоциации альфа электролита уравнением Аррениуса: лямбда/лямбда0 = альфа.
Кроме того, выполняется закон разведения Оствальда, который для бинарного электролита записывается следующим образом: ,где K - константа диссоциации слабого электролита.
Электропроводность электролитов связана со скоростями движения ионов в растворе. Скорость движения vi [м.с-1] иона в растворе пропорциональна напряженности приложенного электрического поля E [В.м-1]:vi = uiE.
Коэффициент пропорциональности u [м2. с-1. В-1] называется абсолютной подвижностью иона.
Произведение uiF (F - постоянная Фарадея) называется подвижностью иона i[Ом-1. м2. кг-экв-1]:i = uiF.
Подвижность иона при бесконечном разбавлении называется предельной подвижностью иона и обозначается лямбда0.
Согласно закону Стокса, предельная подвижность 0 иона с зарядом z и радиусом r в растворителе с вязкостью h описывается формулой: ,
где e - элементарный заряд, F - постоянная Фарадея.
39) Общие свойства металлов.
Металлы и их сплавы в твердом состоянии имеют пространственную кристаллическую решетку. У различных металлов или одного и того же металла, кристаллизующегося в различных температурных условиях, кристаллическая решетка может быть различной - кубической, объемно-центрированной, кубической гранецентрированной и др.
Некоторые металлы при нагревании в твердом состоянии способны изменять свою кристаллическую решетку и ее параметры. Это изменение называют аллотропическим.
Механические свойства металлов характеризуются пределом прочности при растяжении, пределом текучести, относительным удлинением, твердостью, ударной вязкостью; технологические свойства - жидкотекучестью, свариваемостью, ковкостью, электропроводностью, магнитностью и др.
Предел текучести - минимальное напряжение, при котором образец деформируется без увеличения нагрузки.
Относительное удлинение - отношение приращения длины образца после деформации растяжения к его первоначальной длине.
Максимальное напряжение, при котором сохраняется прямая пропорциональность между удлинением образца и приложенной нагрузкой, называют пределом пропорциональности.
Напряжение, соответствующее появлению первых признаков пластической деформации, остающейся после нагрузки образца, называют пределом упругости.
Металлы испытывают на растяжение с помощью разрывных машин, оборудованных приспособлением для записи кривой зависимости между нагрузкой и удлинением образца. Такая кривая называется диаграммой растяжения.
Твердость металла (НВ) является косвенным показателем его прочности. Твердость металла определяют: вдавливанием стального шарика в поверхность металла (метод Бринеля); вдавливанием алмазного конуса или стального шарика с определением твердости по глубине отпечатка (метод Роквелла) и др.
В металле, работающем длительное время при повышенной температуре, происходят пластические деформации, постепенно увеличивающиеся даже при небольших нагрузках. Это явление называют ползучестью металла.
Способность металла под воздействием внешних сил деформироваться без разрушения и сохранять остаточную деформацию называют пластичностью.
Наибольшей электропроводностью обладают медь и алюминий. Некоторые сплавы имеют высокое электросопротивление и используются для превращения электрической энергии в тепловую (нихром).
Некоторые металлы (железо, кобальт, никель) обладают магнитными свойствами и носят название ферромагнитных. При нагреве до определенной температуры эти металлы теряют магнитные свойства.
1)Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
2)Хорошая электропроводность
3)Возможность лёгкой механической обработки (см.: пластичность; однако некоторые металлы, например германий и висмут, непластичны)
4)Высокая плотность (обычно металлы тяжелее неметаллов)
5)Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
6)Большая теплопроводность
7)В реакциях чаще всего являются восстановителями
42)Гальванический элемент. Устройство и принцип работы. Классификация э/х цепей.
Гальванический элемент - химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита. Гальванические элементы являются источниками электрической энергии одноразового действия. Реагенты (окислитель и восстановитель) входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. Гальванический элемент характеризуется ЭДС, напряжением, мощностью, емкостью и энергией, отдаваемой во внешнюю цепь, а также сохраняемостью и экологической безопасностью.
Токообразующими реакциями в этом элементе являются:
- на аноде(–): Zn –2ē →Zn2+;на катоде (+): 2MnO2 + 2NH4+ +2ē→Mn2O3+2NH3+H2O.
Общая схема гальванического элемента: (-)А электролит 1; электролит 2 К (+)
Классификация э/х цепей.
Все э/х цепи подразделяются по 2 признакам:
По характеру суммарного процесса, лежащего в основе действия э/х элемента:
а) химические б) концентрационные
По наличию или отсутствию диффузионных или жидкостных потенциалов (по наличию границ растворов)
а) цепи без переноса (без жидкостной границы, диф. потенциал отсутствует)
б) цепи с переносом (с жидкостной границей)
Химические цепи – состоят из 2-х электродов, на которых протекают различные по природе э/х реакции.
Химические цепи без переноса.
а) содержат один электролит, но один электрод обратим по катиону, а другой по аниону:газовый – газовый1. (-) Pt, H2 HCl Cl2, Pt (+)водородный хлорный
2. I рода – газовый(-) Pt Zn ZnCl2 Cl2 Pt (+)
3. газовый II рода(-) Pt, H2 HCl Hg2Cl2, Hg Pt (+)
4. амальгамные II рода(-) Ag Pt K(Hg) KCl AgCl, Ag (+)
5. I рода – II родартутно-кадмиевый
б) э/х цепь содержит один электролит, но оба электрода обратимы по аниону:
II рода – газовый каломельный хлорный
(-) Pt, Hg, Hg2Cl2 KCl Cl2 (p=1 атм., Pt (+)
ЭДСцепи = Е = Е0 = const не зависит от концентрации электролита KCl.
II Химические цепи с переносом.
Химические цепи с переносом содержат 2 электролита, которые контактируют между собой через диафрагму, мембрану или солевой мост.
(-) Pt Ni NiSO4 KCl Hg2Cl2, Hg Pt (+)илиI рода – II рода (-) Pt Сd CdSO4 Fe3+, Fe2+ Pt (+)I рода – Red-Ox (редокс элек.)(-) Pt Sn2+, Sn4+ Fe3+, Fe2+ Pt (+)Red-Ox – Red-Ox (-) Cu Zn ZnSO4CuSO4 Cu (+)I рода – I рода(элемент Якоби-Даниэля)
I Концентрационные цепи без переноса – содержат один электролит.
Амальгамные цепи – состоят из двух одинаковых по своей природе амальгамных электродов с различными активностями металла в амальгамах (а1 и а2):
(-) М1 (Hg) MA M2 (Hg) (+)электролита1 > а2
Электродные реакции: (+) Мn+ + ne M(Hg) – восстановление(-) M(Hg) – ne Мn+ - окисление
Электродный потенциал каждого электрода:
Суммарный процесс в Г.Э. заключается в переходе металла из более концентрированной амальгамы в менее концентрированную и не является электрохимической реакцией.
M(Hg) M(Hg)
a1 a2
ЭДС цепи : , т.к. активность катионов металла в растворе аМ+ = const и Е0 = 0+ - 0- = 0
Газовые цепи – состоят из двух одинаковых газовых электродов с различным давлением газа:
(-) Pt, H2 HCl H2, Pt (+)p’H2 > p’’H2
Электродные реакции: (+) 2H+ + 2e H2 – восстановление (-) H2 – 2e 2H+ - окисление
Электродный потенциал каждого электрода:
Суммарный процесс состоит в выравнивании давлений газа.
ЭДС цепи : , т.к. аН+ = const
Концентрационные цепи с переносом – состоят из двух одинаковых электродов с различной активностью электролитов. Между двумя растворами электролита имеется граница соприкосновения (диафрагма, мембрана, солевой мост).
В катионных концентрационных цепях с переносом оба электрода обратимы по катиону:
(-) Ag AgNO3 AgNO3 Ag (+) электроды I родаа1 < а2 Е = + - - + диф
(-) Pt, H2 HCl HCl H2, Pt (+) газовые электроды а1 < а2
ЭДС цепи если
где t - - число переноса аниона; - число ионов, на которое диссоциирует 1 молекула электролита; а - средняя активность ионов.
В анионных концентрационных цепях с переносом оба электрода обратимы по аниону:
(-) Ag, AgClKCl KCl AgCl, Ag (+) электроды II родаа1 < а2
(-) Pt, Cl2 HCl HCl Cl2, Pt (+) газовые электродыа1 < а2
ЭДС цепи
Электролиз. Количественные характеристики электролиза. Выход по току.
Электролиз - это окислительно-восстановительный процесс, происходящий в растворах или расплавах электролитов под действием постоянного электрического тока. При электролизе происходит превращение электрической энергии в химическую.
Через электролизёр, содержащий расплав или раствор электролита, проходит постоянный ток от внешнего источника питания. В результате на электродах начинают протекать окислительная и восстановительная реакции.
Электроды – проводники, обладающие электронной проводимостью, находящиеся в контакте с электролитом. Электроды изготавливаются из материалов не реагирующих с компонентами электролита.
Электрод, соединенный с отрицательным полюсом, является катодом, на нем идет процесс восстановления; электрод, соединенный с положительным полюсом, является анодом, на нем идет процесс окисления.
Электроды различают инертные (нерастворимые) и активные (растворимые).
Растворимые электроды (аноды) сами участвуют в электродной реакции, поэтому масса их убывает.
Нерастворимые аноды не растворяются из-за положительного значения их равновесного потенциала или образования на их поверхности защитных пленок, т.е. на их поверхности идут электродные реакции и выделяются вещества. Примерами таких анодов могут быть платиновые металлы, графит, титан и тантал.
Существуют строго определенные соотношения между количеством прошедшего электричества и количеством вещества, выделившегося при электролизе. Эти соотношения были открыты М. Фарадеем в 30-х годах прошлого века.
(1834 г.) Первый закон Фарадея: для любого данного электродного процесса масса вещества, выделяющегося на электродах, прямо пропорциональна количеству прошедшего через раствор электричества: m=kQ=kIt=AIt/nF
где m – масса окисляемого или восстановленного вещества;k – электрохимический эквивалент – масса вещества, превращаемого 1 Кл электричества;Q - количество электричества (Кл); I - сила тока (А);t – время, т.к. . или (для веществ); где А – атомная масса; МЭ — молярная масса вещества (г/моль);n – число электронов, принимающих участие в электрохимическом процессе.
Второй закон Фарадея: при прохождении одинакового количества электричества через различные электролиты массы выделившихся веществ на электродах пропорциональны их химическим эквивалентам.
Для выделения одного эквивалента любого вещества необходимо затратить 96500 Кл электричества. m1/m2=Э1/Э2 при Q=const
При электролизе, кроме основных электродных реакций идут побочные, на которые также расходуется электричество. Поэтому масса практически выделившегося вещества меньше, теоретически рассчитанной по закону Фарадея.
Отношение n=mпракт/mтеор называется выходом по току. Выход по току характеризует эффективность процесса электролиза.
Выход по току – это отношение фактически превращенного при электролизе вещества к теоретически рассчитанному:
m – масса выделившегося вещества, кг;
Э – эквивалентная масса, кг/моль;
ВТ – выход по току, 0 < ВТ 1.
Из формулы 1, 2, 3 следует: mпр=ЭItBт/F=MitBт/nF
где М – молярная масса выделившегося вещества, кг/моль;
n - число электронов, участвующих в катодной реакции.
Законы Фарадея используются в различных методах исследования, а также при калибровке особо точных электроизмерительных приборов.
47. Применение электролиза в технике.
электрометаллургия – это область, охватывающая всю совокупность э/х методов получения металлов электролизом.
1)Получение металлов и др. соединений. Именно э/х методом получают сегодня все щелочные и щелочноземельные металлы, а также Аl.Например:
Na, получают электролизом расплава каустической соды NaOH;
Mg - электролизом расплава MgCl2;
Al - электролизом расплава криолита и глинозема (Na3AlF6 + Al2O3). Необходимо в данных процессах поддерживать высокую температуру ( 1000С) – это весьма энергоёмкие процессы.
Электролизом получают F2, Cl2, O2, H2, а также гидроксиды щелочных и щелочноземельных металлов (образующиеся в результате вторичных реакций).
F2 получают электролизом смеси NaF + HF;
Cl2 и NaOH – из водного раствора NaCl;
H2 и O2 – электролизом Н2О + NaOH (или H2SO4, или Na2SO4, которые необходимо вводить в электролит для увеличения электропроводности и уменьшения омического сопротивления).
Особый интерес представляет возможность получения сложных химических соединений с помощью электролиза – электросинтеза.
2)Направление применения электролиза в металлургии – рафинирование металлов (очистка, получение их в чистом виде). Электролитическому рафинированию подвергают металлы: Fe, Cu, Pb, Ag, Au, Sn, Ni и др. металлы. Современная техника предъявляет большие требования к чистоте материалов, в частности металлы. В цветной металлургии для очистки металлов от примесей широко применяют электролиз с растворимым анодом. В наибольшем масштабе этот процесс широко используется для рафинирования меди (Cu). В промышленности, соединения меди восстанавливают с помощью химических восстановителей.
3)Важнейшая область прикладной электрохимии – гальванотехника – включает в себя два основных направления: гальванопластика и гальваностегия.
Гальванопластика – метод электрохимического получения точных металлических копий с рельефных поверхностей.
Путем гальванопластики изготавливают матрицы для прессования различных изделий, матрицей для теснения кожи и бумаги. В настоящее время основным применением гальванопластики является нанесение металлических рисунков на полупроводники и на проводящие материалы (например в производстве печатных плат, радиосхем).
Гальваностегия – получение металлических покрытий на металлах и пластмассах.
Гальванические покрытия наносят для защиты металлов от коррозии, а также в декоративных и специальных целях (например, для уменьшения сопротивления электрических контактов, увеличения отражательной способности).
Сущность гальванического нанесения покрытий состоит в следующем: хорошо очищенную и обезжиренную деталь погружают в раствор, содержащий соль того металла, которым её необходимо покрыть и присоединяют в качестве катода к цепи постоянного тока. Наибольшая защита обеспечивается при получении плотных мелкокристаллических осадков. Для этого обычно требуется работать с малыми плотностями тока и наоборот – если бы нам потребовалось бы получить металл в состоянии более рыхлом, необходимо пользоваться высокой плотностью тока.
49. Механизмы коррозии.
Рассмотрим работу локального микрогальванического элемента на поверхности металла (рис.1). На участке поверхности металла, обладающим более отрицательным значением потенциала (анод), идет реакция растворения металла, коррозия:
(I)На участке поверхности с более положительным потенциалом (катод) происходит реакция восстановления окислителя, содержащегося в электролите:
, (II)где Ox – окисленная форма; Red – восстановленная форма.
Вид катодного процесса зависит от вида среды (от вида окислителя). В природных условиях наиболее частыми катодными процессами являются:
а) в кислой среде (pH 7) при ограниченном доступе кислорода к металлу катодный процесс идет по схеме: .
Коррозионные процессы, сопровождающиеся восстановлением водорода, называются коррозией с водородной деполяризацией.
б) при большой скорости поступления кислорода в нейтральной (pH=7) или щелочной (pH7) средах преимущественным является другой процесс: .
В слабокислой среде при условии хорошего доступа кислорода процесс также идет с поглощением кислорода. В этом случае схема катодного процесса имеет следующий вид: Коррозионные процессы, сопровождающиеся восстановлением кислорода, называются коррозией с кислородной деполяризацией.
Процесс отвода электронов с катодных участков называется деполяризацией.
Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами
Коррозия с кислородной деполяризацией наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.
Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой равно 0,21 атм.
Ионизация кислорода:
В реальных условиях коррозии металла наиболее затрудненными стадиями процесса являются:
Реакция ионизации кислорода на катоде. Возникающую при этом поляризацию называют перенапряжением кислорода. Говорят, что процесс идет с кинетическим контролем.
Диффузия кислорода к катоду, либо перенапряжение диффузии. В этом случае, говорят, что процесс идет с диффузионным контролем.
Возможны случаи, когда обе стадии – ионизация кислорода и диффузия кислорода оказывают влияние на процесс. Тогда говорят, о кинетически-диффузионном контроле.
Основной электрохимический механизм коррозии может иметь варианты. Анодная реакция при n 2 может протекать через одноэлектронные стадии. Так при n = 2 могут иметь место следующие процессы: Катион в промежуточной степени окисления M+ в некоторых случаях настолько устойчив, что может вступать в химическую реакцию с окислителем прежде, чем успевает произойти его электрохимическое анодное доокисление:
III) (
В этом случае говорят об электрохимическо-химическом механизме коррозии. Схема этого процесса представлена на рисунке 2.
Еще одной разновидностью электрохимического механизма коррозии является так называемый каталитический механизм (рис.3). Он очень напоминает предыдущий механизм коррозии и отличается от него тем, что протекающая очень быстро реакция (III) препятствует поступлению окислителя к поверхности металла. В результате в катодном процессе восстанавливаются катионы металла (при n=2 - ):
.
Ионы в этом случае играют роль катализатора процесса коррозии.
На рисунке 4 приведена схема газовой коррозии в среде кислорода. В общем виде уравнение реакции можно записать так:
.
Окисление металлов – процесс многостадийный. В результате взаимодействия вначале на поверхности образуется моно-, а затем полимолекулярный слой оксидов. По мере утолщения пленки процессы встречной диффузии реагентов затрудняются. Образующаяся оксидная пленка будет тормозить дальнейшее развитие коррозионного процесса. Однако это будет происходить только в том случае, если пленка будет обладать защитными свойствами.
