Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovye_gurik_1_pod_redakciei_Maksi_part_2.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
164.94 Кб
Скачать

2) Уравнениями Лагранжа второго рода называют дифференциальные уравнения движения механической системы, получаемые при применении лагранжева формализма.

Если голономная механическая система описывается лагранжианом (qi — обобщённые координаты, t — время, точкой обозначено дифференцирование по времени) и в системе действуют только потенциальные силы, то уравнения Лагранжа второго рода имеют вид

где i = 1, 2, … n (n — число степеней свободы механической системы).

Если в системе действуют непотенциальные силы (например, силы трения), уравнения Лагранжа второго рода имеют вид

Где — кинетическая энергия системы, Qi — обобщённая сила.

В лагранжевой механике вывод уравнений Лагранжа происходит на основе принципа наименьшего действия. Механическая система может быть описана некой функцией , называемой лагранжианом. Принцип наименьшего действия гласит, что функционал

называемая действием принимает минимальное значение на траектории системы (здесь t1 и t2 — начальный и конечный моменты времени).

Применяя к функционалу действию стандартную схему оптимизации, получаем уравнения Лагранжа — Эйлера, которые и называются уравнениями Лагранжа второго рода для механической системы.

Билет 16.1) Механическая система материальных точек - совокупность точек, в которой положение и движение каждой зависит от остальных. Система с кинематическими ограничениями - несвободная. Масса механической системы - арифметическая сумма масс всех ее точек. Центр масс - геометрическая точка, положение которой определяется уравнениями:

Задаваемые силы и реакции связи;

Теорема о движении центра масс механической системы.

. Уравнение движения механической системы: ; ; .

Теорема: Центр масс механической системы движется как материальная точка, обладающая массой механической системы, к которой приложены все внешние силы, действующие на данную механическую систему:

Следствия:

1. внутренние силы не влияют на движение механической системы.

2. если главный вектор всех внешних сил равен нулю, то центр масс находится в состоянии покоя или движется равномерно и прямолинейно.

3. если проекция главного вектора всех внешних сил на какую-либо ось равна нулю, то проекция центра масс неподвижна или движется равномерно и прямолинейно.

2) Уравнениями Лагранжа второго рода называют дифференциальные уравнения движения механической системы, получаемые при применении лагранжева формализма.

Если голономная механическая система описывается лагранжианом (qi — обобщённые координаты, t — время, точкой обозначено дифференцирование по времени) и в системе действуют только потенциальные силы, то уравнения Лагранжа второго рода имеют вид

где i = 1, 2, … n (n — число степеней свободы механической системы).

Если в системе действуют непотенциальные силы (например, силы трения), уравнения Лагранжа второго рода имеют вид

Где — кинетическая энергия системы, Qi — обобщённая сила.

В лагранжевой механике вывод уравнений Лагранжа происходит на основе принципа наименьшего действия. Механическая система может быть описана некой функцией , называемой лагранжианом. Принцип наименьшего действия гласит, что функционал

называемая действием принимает минимальное значение на траектории системы (здесь t1 и t2 — начальный и конечный моменты времени).

Применяя к функционалу действию стандартную схему оптимизации, получаем уравнения Лагранжа — Эйлера, которые и называются уравнениями Лагранжа второго рода для механической системы.

Билет 30.1) Работа силы. Мощность. Элементарная работа dA = Ftds, Ft – проекция силы на касательную к траектории, направленная в сторону перемещения, или dA = Fdscosa.

Если a – острый, то dA>0, тупой – <0, a=90o: dA=0. dA= – скалярное произведение вектора силы на вектор элементарного перемещения точки ее приложения; dA= Fxdx+Fydy+Fzdz – аналитическое выражение элементарной работы силы. Работа силы на любом конечном перемещении М0М1: . Если сила постоянна, то = F×s×cosa. Единицы работы:[1 Дж (джоуль) = 1 Нм].

, т.к. dx= dt и т.д., то .

Теорема о работе силы: Работа равнодействующей силы равна алгебраической сумме работ составляющих сил на том же перемещении А=А1+А2+…+Аn.

Работа силы тяжести: , >0, если начальная точка выше конечной.

Работа силы упругости: –работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины.

Работа силы трения: если сила трения const, то - всегда отрицательна, Fтр=fN, f – коэфф.трения, N – нормальная реакция поверхности.

Работа силы тяготения. Сила притяжения (тяготения): , из mg= , находим коэфф. k=gR2. – не зависит от траектории.

Мощность – величина, определяющая работу в единицу времени, . Если изменение работы происходит равномерно, то мощность постоянна: N=A/t. [1 Вт (ватт) =1 Дж/с, 1 кВт (киловатт) =

= 1000 Вт, 1л.с.(лошадиная сила) = 75 кгс×м/с = 736 Вт].

Билет 17 1) Количество движения материальной точки - вектор, численно равный произведению массы точки на скорость ее движения и совпадающий с ней по направлению.

Теорема: Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку за этот промежуток времени.

Кинетическая энергия материальной точки - скаляр, равный половине произведение массы точки на квадрат ее скорости.

Основное уравнение динамики: , домножим на элементарное перемещение: ; ; . Интегрируя полученное выражение:

Теорема: изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Момент количества движения материальной точки относительно полюса - вектор численно равный произведению количества движения на плечо d (кратчайшее расстояние от полюса до линии действия количества движения) и направлен перпендикулярно плоскости, проходящей через вектор количества движения и полюс, в сторону, откуда вращение вектора вокруг полюса видно против часовой стрелки: , где r - расстояние от полюса до материальной точки.

Проекция момента количества движения материальной точки относительно полюса на ось, проходящую через этот полюс равна моменту количества движения точки относительно этой оси: , где k - единичный орт оси z.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]