- •1. Данные. Передача данных. Кодирование данных, цели кодирования. Передача информации в аналоговом и цифровом виде: достоинства и недостатки.
- •2.Структура системы передачи данных. Непрерывный и дискретный каналы системы передачи данных. Модуляция как средство передачи данных по непрерывному каналу.
- •Непрерывный и дискретный каналы системы передачи данных.
- •Модуляция как средство передачи данных по непрерывному каналу.
- •3.Сигнал как переносчик информации. Среда распространения сигналов. Искажения сигналов в среде распространения. Виды помех.
- •4. Вещественный и комплексный сигналы. Энергетические характеристики сигналов. Свойство ортогональности сигналов. Интервал ортогональности.
- •5.Разложение сигнала конечной длительности в обобщенный ряд Фурье. Спектр сигнала. Ошибка аппроксимации конечным рядом. Равенство Парсеваля.
- •6. Ортогональные и ортонормированные системы базисных функций. Широкораспространенные системы базисных функций.
- •1. Ортогональность
- •2.Мультипликативность
- •7. Корреляционные (временные) характеристики сигналов. Авто- и взаимная корреляционная функции, их свойства.
- •8.Элементарные разрывные функции и их свойства.
- •9.Два способа представления вещественного сигнала на комплексной плоскости. Понятие положительной и отрицательной частоты.
- •10. Комплексные сигналы. Методы формирования, примеры и цели использования комплексных сигналов в системах передачи данных.
- •11. Аналитический сигнал. Огибающая и фаза аналитического сигнала. Представление аналитического сигнала на комплексной плоскости. Спектр аналитического сигнала.
- •12. Комплексная огибающая и ее свойства. Связь с аналитическим сигналом. Представление комплексной огибающей на комплексной плоскости. Спектр комплексной огибающей.
- •13. Тригонометрический ряд Фурье. Две формы записи. Расчет коэффициентов ряда.
- •15.Спектры периодического и непериодического сигналов. Прямое и обратное преобразование Фурье.
- •16.Модуль и аргумент комплексной спектральной плотности (амплитудный и фазовый спектры), их свойства. Связь ряда Фурье и преобразования Фурье.
- •2.Балансная (двухполосная) ам.
- •3.Однополосная ам.
- •20.Частотная модуляция и манипуляция. Индекс модуляции. Спектр чм радиосигнала. Типы сигналов с частотной манипуляцией.
- •Частотная манипуляция:
- •21. Фазовая модуляция и манипуляция. Индекс модуляции. Спектр фм радиосигнала. Типы сигналов с фазовой и амплитудно-фазовой манипуляцией.
- •22. Определение минимальной достаточной полосы частотного спектра сигналов с амплитудной, частотной и фазовой манипуляцией.
- •23.Линейные цепи и их звенья. Передаточная функция. Временные и частотные характеристики звеньев, связь между ними.
- •24. Анализ линейных цепей. Точные методы анализа линейных цепей по их частотным и временным характеристикам.
- •3)Метод интеграла наложения
- •25. Типовые линейные звенья. Соединение звеньев.
- •26.Оптимальная линейная фильтрация сигнала. Согласованный фильтр, его импульсная характеристика.
- •27. Устойчивость замкнутых линейных цепей. Условие и критерии устойчивости.
- •28. Замкнутые следящие системы. Система фазовой автоподстройки частоты. Дифференциальное уравнение системы фапч. Применение в системах передачи данных.
- •29. Анализ системы фапч без фильтра. Устойчивое и неустойчивое равновесие системы. Работа системы фапч в режиме захвата (слежения). Свойства и характеристики системы фапч.
- •30..Представление помехи в виде случайного процесса. Стационарные и эргодические процессы. Одно-, двух-, и многомерные плотности вероятности и их числовые характеристики.
- •1.Одномерный случайный процесс.
- •2.Двумерный случайный процесс.
- •32.Нормальный случайный процесс. Причины широкого распространения. Центральная предельная теорема Ляпунова. Нормализация случайного процесса при прохождении через инерционную линейную цепь.
- •33.Огибающая и фаза смеси сигнала и случайного процесса. Распределение огибающей. Законы Рэлея и Райса.
- •34.Распределение фазы смеси сигнала и случайного процесса. Зависимость распределений огибающей и фазы от отношения сигнал-шум.
- •35. Использование информации о распределении огибающей и фазы радиосигнала для принятия решения (статистической гипотезы) при демодуляции.
- •37. Синтез оптимального когерентного алгоритма приема по критерию максимального правдоподобия.
- •38. Неоптимальные алгоритмы приема сигналов с амплитудной, частотной и фазовой манипуляцией.
8.Элементарные разрывные функции и их свойства.
1
.Функция
единичного скачка
(функция
Хевисайда),
она же функция включения, равна нулю
для отрицательных значений аргумента
и единице – для положительных. При
нулевом значении аргумента функцию
считают либо неопределенной, либо равно
½:
При умножении на любую функцию включение происходит при t=0.
2
.Дельта-функция
(функция Дирака)
представляет собой бесконечно узкий
импульс с бесконечной амплитудой,
расположенный при нулевом значении
аргумента функции. «Площадь» импульса
равна единице:
Производная функция Хэвисайда определяет дельта-функцию Дирака.
С
игнал
в виде дельта-функции невозможно
реализовать физически, однако эта
функция очень важна для теоретического
анализа сигналов и систем. На графиках
дельта-функции обычно изображается
стрелкой, высота которой пропорциональна
множителю, стоящему перед дельта-функцией.
Одно из важных свойств дельта-функции – фильтрующее свойство. Оно состоит в том, что если дельта-функция присутствует под интегралом в качестве множителя, то результат интегрирования будет равен значению остального подынтегрального выражения в той точке где сосредоточен дельта импульс
3
.Функция
SIGN(t)
С
войства
функции:
- Область определения:
- Функция нечетна.
- Область значений: {-1;0;+1}
- Точка x = 0 является точкой разрыва первого рода, так как пределы справа и слева от нуля равны + 1 и - 1 соответственно.
Применяется для любых функция, результатом применения является изменение знака в момент времени t=0.
9.Два способа представления вещественного сигнала на комплексной плоскости. Понятие положительной и отрицательной частоты.
В электротехнике кроме временной модели представления гармонического сигнала принята модель, описывающая колебание с помощью вращающегося комплексного вектора. Область изменения такого вектора называется комплексной плоскостью.
Вещественный сигнал можно представить 2 способами:
1.Аналитический
сигнал:
,где
или
При положительной частоте точка движется против часовой стрелки, и уравнение имеет знак +, при отрицательной частоте точка движется по часовой стрелке и уравнение имеет знак -.
А
налитический
сигнал имеет односторонний спектр.
2. Формула Эйлера:
Тогда cos можно представить:,
г
де
П
ервый
член уравнения – это окружность, второй
член – окружность вращающаяся в
противоположную сторону.
Вещественный сигнал всегда имеет симметричный двусторонний спектр, а комплексный всегда несимметричный. Либо
, либо
Понятие отрицательной и положительной частоты может быть показано на примере вращающегося в ту или другую сторону вектора. Частота со знаком отражает как скорость, так и направление вращения. Скорость выражена в оборотах (циклах) в секунду (герцах) или рад/с (где 1 оборот соответствует 2π радианам).
Для заданного во времени сигнала такой вектор представляет его на комплексной плоскости. Зависимость значения сигнала от времени есть лишь зависимость проекции вектора на действительную ось от времени. Поэтому понятие отрицательной частоты не может быть представлено в виде некомплексных сигналов во временной области и распространяется только на частотную.
