
- •Аглава определение эконометрики
- •1.1. Предмет эконометрики
- •1.2. Особенности эконометрического метода
- •I продукции на 1 ед. Продукции
- •На 1 ед. Продукции
- •Где Ку я, b — параметры;
- •' 1.3. Измерения в экономике
- •0. Каковы допустимые преобразования на каждой шкале изме рения?глава парная регрессия и корреляция в эконометрических исследованиях
- •2.1. Спецификация модели
- •2.3. Оценка существенности параметров линейной регрессии и корреляции
- •2.4. Интервалы прогноза по линейному уравнению регрессии
- •IfYi пеосм
- •XStudenmund a.N. Using Econometrics: a Practical Guide. — 2-nd Edition, opyright, 1992 by Harper Collins Publishers Inc. - p. 226.
- •Доля расходов на товары длительного пользования в зависимости от дохода семьи
- •1 См., например: Лизер с. Эконометрические методы и задачи / Пер. С англ. - м.: Статистика, 1971. - с. 94.
- •В данном разделе рассматриваются лишь внутренне линейные модели.
- •Где f(X) — первая производная, характеризующая соотношение приростов результата и фактора для соответствующей формы связи.
- •Коэффициенты эластичности для ряда математических фушкций
- •Зависимость рентабельности продукции у (%) от ее трудоемкости х (ч/ед.)
- •1ДжошштДж. Эконометрические метопы / Пер. С англ. — м.: Статистика, 1980. - с. 60.
- •2.6. Корреляция для нелинейной регрессии
- •Индекс детерминации; число наблюдений; число параметров при переменных х.
- •2.7. Средняя ошибка аппроксимации
- •Расчет средней ошибки аппроксимации
- •TГлава множественная регрессия и корреляция
- •3.1• Спецификация модели
- •Потребление; доход;
- •13.2. Отбор факторов при построении
- •Соответствующих факторов.
- •Приведенная форма модели рассматривается в гл. 4
- •3.3. Выбор формы уравнения регрессии
- •См.: Маленво э. Статистические методы эконометрии. — м.: Статис 1975.-с. 138.
- •- Стоимость основных производственных фондов;
- •.4. Оценка параметров уравнения ножественной регрессии
- •3.5. Частные уравнения регрессии
- •3.6. Множественная корреляция
- •Ryxiпарные коэффициенты корреляции результата с каждым фактором.
- •Товаров по региону; х4 - процент увеличения объема продаж фирмы по сравнению с предыдущим годом. /
- •3.7. Частная корреляция
- •Модель фактора X/.
- •3.8. Оценка надежности результатов множественной регрессии и корреляции
- •Коэффициент множественной детерминации для модели с полным набором факторов;
- •Число степеней свободы
- •Сумма квадратов,
- •Dщая Регрессия
- •Отклонений.
- •1 Р с у при неизменном уровне всех других факторов;
- •Включающего все факторы, кроме фактора х(;
- •Р сии с полным набором факторов.
- •3.9. Фиктивные переменные во множественной регрессии
- •1 Подробнее о разных методах построения уравнения множественной регрессии см.: Дрейпер н., Смит г. Прикладной регрессионный анализ. — с. 172-225.
- •2См., например: Ерина а а//Математико-статистические методы изучения экономической эффективности производства. — м.: Финансы и статистика, 1983.
- •Где параметры и случайная составляющая представлены в логарифмах.
- •— Если предприятие находится в остальных районах;
- •— Если предприятие находится в Дальневосточном районе, о — если предприятие находится в остальных районах.
- •Распространенность ручного труда на предприятиях одной отрасли в зависимости от уровня автоматизации производства
- •— Для остальных предприятий;
- •— Для предприятий со средним уровнем автоматизации
- •3.10. Предпосылки метода наименьших квадратов
- •Рйе.3.2. Зависимость случайных остатков в/ от теоретических значений ух
- •'См. Подробно: Статистическое моделирование и прогнозирование: Учеб. Пособие / Под ред. А. Г. Гранберга. — м.: Финансы и статистика, . 1990.-с. 158.
- •И максимальных значениях х; в — максимальная дисперсия остатков при малых значениях х и дисперсия остатков однородна по мере увеличения значений х
- •Рие. 3.6. Гомоскедастичность остатков
- •Рне. 3.8. Гетероскедастичность: большая дисперсия z{ для больших значений ух
- •Районы города
- •165 За строками цифр. - сПб, 1995. - с. 141-145.
- •3.11. Обобщенный метод наименьших квадратов
- •Гомоскедастичности остатков; к{ — коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.
- •В чем смысл обобщенного метода наименьших квадратов?глава системы эконометрических уравнений
- •4.1. Общее понятие о системах уравнений,
- •4.2. Структурная и приведенная формы модели
- •4.3. Проблема идентификации
- •Где у, и у2 — совместные зависимые переменные.
- •4.4. Оценивание параметров структурной модели
- •Где и]уи2 — случайные ошибки приведенной формы модели.
- •Расчетные данные для второго шага дмнк
- •4.5. Применение систем эконометрических уравнений
- •1 См.: Тинтнер г. Введение в эконометрию. - с. 175-176, 267—269.
- •1 См.: Лизер с. Эконометрические методы и задачи. - с. 115.
- •4.6. Путевой анализ
- •» /Глава моделирование одномерных временных рядов1
- •5.1. Основные элементы временного ряда
- •5.2. Автокорреляция уровней временного ряда и выявление его структуры
- •ILiXj-X)(yj-y)
- •5.3. Моделирование тенденции временного ряда
- •Автокорреляционная функция временного ряда темпов роста номинальной месячной заработной платы за 10 месяцев 1999 г., % к уровню декабря 1998 г.
- •5.4. Моделирование сезонных и циклических колебаний
- •Расчет значений сезонной компоненты в аддитивной модели
- •16* Расчет выравненных значений г и ошибок е в аддитивной модели
- •Прибыль компании, тыс. Долл. Сша
- •Расчет выравненных значений т и ошибок е в мультипликативной модели
- •5.5. Моделирование тенденции временного ряда
- •Глава изучение взаимосвязей по временным рядам
- •6.1. Специфика статистической оценки взаимосвязи двух временных рядов
- •6.2. Методы исключения тенденции
- •Результаты расчета параметров линейных трендов расходов на конечное потребление и совокупного дохода
- •Расчет критерия Дарбина — Уотсона дм модели зависимости потребления от дохода
- •6.4.Оценивание параметров уравнения регрессии при наличии автокорреляции в остатках
- •6.5. Коинтеграция временных рядов
- •7.2. Интерпретация параметров моделей с распределенным лагом
- •7.3. Изучение структуры лага и выбор вида модели с распределенным лагом
- •7.4. Модели адаптивных ожиданий
- •7.5. Оценка параметров моделей авторегрессии
- •7.6. Новые направления в анализе многомерных временных рядов
- •В чем сущность моделей рациональных ожиданий? Какова специфика оценки их параметров?литература
- •.Предметный указатель
- •6Оглавление
- •Isbn 5-279-01955-0
- •Эконометрика
(i-b-B)
99Приведенная форма модели рассматривается в гл. 4
реляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости оттого, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.
Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:
метод исключения;
метод включения;
шаговый регрессионный анализ.
Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты — отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ)1.
На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедуре отсева факторов. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6—7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной вариации очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F-крите- рий меньше табличного значения.
3.3. Выбор формы уравнения регрессии
Как и в парной зависимости, возможны разные виды уравнений множественной регрессии: линейные и нелинейные.
Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии ух — а + Ьх • х{ + Ь2 * х2 + ... + Ьр • хр параметры при jc называются коэффициентами «чистой» регрессии. Они
'Подробнее см.: Дрейпер Смит Г. Прикладной регрессионный анализ.-С. 172-188.
100
характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.
Пример. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:
= 0,5 + 0,35 • jc, + 0,73 • х2,
где у — расходы семьи за месяц на продукты питания, тыс. руб.; х, - месячный доход на одного члена семьи, тыс. руб.; х2 — размер семьи, человек.
Анализ данного уравнения позволяет сделать выводы — с рос- м дохода на одного члена семьи на 1 тыс. руб. расходы на пита- ие возрастут в среднем на 35Q руб. при том же среднем размере мьи. Иными словами, 35 % дополнительных семейных расхо- ов тратится на питание. Увеличение размера семьи при тех же ее оходах предполагает дополнительный рост расходов на питание а 730 руб. Параметр а не подлежит экономической интерпре- ции.
При изучении вопросов потребления коэффициенты регрес- и рассматриваются как характеристики предельной склонное - к потреблению. Например, если функция потребления С, име- вид
с, == д + v + А * 1 + е>
потребление в период времени t зависит от дохода того же пе- Иода Л, и от дохода предшествующего периода Rt_{. Соответст- нно коэффициент Ь0 характеризует эффект единичного возрас- ния дохода Rt при неизменном уровне предыдущего дохода, оэффициент Ь0 обычно называют краткосрочной предельной клонностью к потреблению. Общим эффектом возрастания как кущего, так и предыдущего дохода будет рост потребления на — b0 + Коэффициент b рассматривается здесь как рлгосрочная склонность к потреблению. Так как коэффициен- Ы Ь0 и Ь} > 0, то долгосрочная склонность к потреблению долж- а превосходить краткосрочную bQ. Например, за период 905—1951 гг. (за исключением военных лет) М.Фридман постро- для США следующую функцию потребления: С, ~ 53 + 0,58 • Rt 0,32 * /?,_! с краткосрочной предельной склонностью к потреб- нию 0,58 и с долгосрочной склонностью к потреблению 0,91.