
- •Введение
- •Виды сервиса по времени его осуществления
- •Основные подходы к осуществлению сервиса
- •1 Обоснование применения методов анализа системы сервиса.
- •1.1 Системы сервиса.
- •1.2. Стандарт обслуживания.
- •1.3 Центр ответственности.
- •1.4 Программа контроля качества обслуживания.
- •1.5 Обучение персонала.
- •1.6 Система мотивации персонала.
- •1.7 Корпоративная культура и внутренний pr.
- •2. Обучение персонала:
- •2 Методы оптмизаци систем сервиса.
- •2.1 Решение задач сервиса с использованием методов графов.
- •2.2 Основы теории деревьев
- •2.3 Основы теории сетей
- •3 Практическое применение методов анализа системы сервиса на примере: гостиницы «Валенсия»
- •3.1 Понятия и история методов анализа систем сервиса (сетевое планирование.).
- •3.2 Применение методов анализа систем сервиса при формировании гостиничных корпораций.
- •3.3 Практическое применение методов на примере гостиницы « Валенсия».
- •Заключение
- •Библиографический список
2.2 Основы теории деревьев
Теория деревьев основана на теории графов, так как дерево – это связанные цикличные не ориентированные графы.
Дерево не имеет петель и кратных ребер. Любые две вершины дерева связанны между собой единственной простой цепью. При добавлении любого ребра к дереву образуется один цикл. При удалении одного ребра, разрушается связность, и дерево распадается на компоненты. В связи с этим дерево можно также определить как минимальный связный граф. Минимальность понимается в том смысле, что он не содержит подграфа, состоящего из всех его вершин и являющегося связным. Достаточное условие для того, чтобы граф назывался деревом – единственная цепь между двумя вершинами, (рис 1.3)
рис
1.5
Лесом – называется граф,компаненты которого являются деревьями.
Ориентированное дерево – это дерево, в котором никакие две дуги не заходят в одну и ту же вершну,это ориентированный граф без циклов, в котором полустепень захода вершины равна 1.
Для оценки степени сложности дерева используются следующие характеристики:
Порядок узла – число его дочерних узлов
Порядок дерева – наибольший порядок его узлов
Глубина узла – число его предков плюс 1
Глубина или высота дерева – наибольшая глубина его узлов
Расстояние d(x,y) вершены х. и y в дереве – что число ребер в цепи, соединяющей эти вершины
Эксцентриситет e (x) вершины x до наиболее удаленной от нее вершины
2.3 Основы теории сетей
Сетью – называется конечный граф N = (K;R) без циклов и петель, ориентированный в одном общем направлении от вершин x, являющихся входами графа, к вершинам y , являющимся его выходами.
Сети используются для моделирования способов пересылки в заданном направлении некоторых объектов из одной вершины графа в другую по его дугам. Поэтому в сетях чаще употребляют термин «связь» вместо терминов «ребро» или «дуга». Вместо термина «вершина» используют термин «узел». Узел служит для обозначения физического объекта.
В теории сетей используются следующие понятия:
Источник s – узел, из которого начинается перемещение объектов; источник порождает поток, например предприятия сервиса, порождает поток потребительских товаров
Строк t – узел, в которой заканчивается перемещение объектов; сток поглощает поток, например потребитель потребляет товары; все другие узлы называются промежуточными;
Единицы потока – объекты, которые перемещаются или «протекают» из источника в сток.
Каждый нулевой столбец матрицы смежности соответствует источнику, а каждая нулевая строка – стоку.
В сети каждой дуге (связи) приписывается величина c (x;y)- пропускная способность, характеризующая максимальное число единиц потока, которая связь может пропустить. Такую связь часто называют транспортной. Сеть с заданными пропускным способностями её связей называют нагруженной сетью (рис 1.6). Если направление движения по дуге совпадает с ориентацией сети, дугу называют прямой, в противном случае её называют обратной. Связь сети называют насыщенной, если поток связей равен ее пропускной способности.
Циркуляцией – называется поток по связям сети, для которого в каждом узле выполняется условие сохранения.
рис
1.6