Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nachert.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
800.82 Кб
Скачать

18. Взаимное расположение прямой и плоскости

Прямая принадлежит плоскости.

Прямая параллельна плоскости.

Прямая пересекает плоскость.

Прямые линии, принадлежащие плоскости и занимающие частное положение по отношению к плоскостям проекций, называются главными линиями плоскости.

Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Большое значение для задач начертательной геометрии имеет частный случай пересечения прямой и плоскости, когда прямая перпендикулярна плоскости.

Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей.

19. Прямая пересекающая плоскость – алгоритм решения

Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость g (таким образом а Î g).

Находим линию пересечения вспомогательной плоскости с заданной. Горизонтальный след плоскости g1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей g и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.

Определяем точку пересечения прямых а и п. На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.

Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

20 Прямая линия перпендикулярная плоскости – теорема о перпендикуляре к плоскости

Прямая, перпендикулярная к плоскости, если перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. На основании теоремы о проецировании прямого угла в качестве прямых плоскости общего положения удобнее всего использовать ее линии уровня.

Поэтому, проводя перпендикуляр к плоскости, необходимо брать в этой плоскости две такие прямые: горизонталь и фронталь.

Проекции прямой, перпендикулярной к плоскости, на комплексном чертеже перпендикулярны к соответствующим проекциям ее линий уровня, т.е. если прямая линия перпендикулярна плоскости, то ее горизонтальная проекция должна быть перпендикулярна горизонтальной проекции горизонтали, а ее фронтальная проекция — фронтальной проекции фронтали или соответствующим следам плоскости.

теорема о перпендикуляре к плоскости

если прямая перпендикулярна плоскости , то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция - фронтальной проекции фронтали той же плоскости.

21. Взаимно перпендикулярные плоскости.

Две плоскости перпендикулярны, если одна из них проходит через пенпердикуляр к другой.

Следовательно, плоскость , перпендикулярную данной плоскости , можно построить:

1) либо как плоскость, проходящую через прямую, перпендикулярную плоскости ;

2) либо как плоскость, перпендикулярную одной из прямых, принадлежащих плоскости .

В обоих случаях задача имеет бесчисленное множество решений, если на плоскость не наложено каких-либо дополнительных условий.

Ортогональные проекции. Многогранники.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]