- •1) Виды проецирования: центральное и параллельное
- •1. Проекции точки. Образование чертежа Монжа - метод Монжа
- •2. Координаты точки
- •3. Две и три проекции точки
- •7. Следы прямой
- •8. Взаимное расположение точки и прямой
- •9. Определение длин отрезка прямой( натуральная величина отрезка) и углов наклона прямой к плоскостям проекции
- •1) Методом прямоугольного треугольника.
- •10. Взаимное расположение двух прямых
- •11. Взаимно перпендикулярные прямые линии. Теорема о проецировании прямого угла.
- •13. Плоскости частного положения.
- •1. Горизонтальная плоскость уровня - || п1
- •2. Фронтальная плоскость уровня - || п2.
- •3. Профильная плоскость уровня - || п3.
- •15. Главные линии плоскости прямые уровня и линии наибольшего уклона
- •16. Взаимное расположение двух плоскостей.
- •17 Алгоритм решения задачи пересечения двух плоскостей.
- •18. Взаимное расположение прямой и плоскости
- •19. Прямая пересекающая плоскость – алгоритм решения
- •20 Прямая линия перпендикулярная плоскости – теорема о перпендикуляре к плоскости
- •21. Взаимно перпендикулярные плоскости.
- •1. Выпуклые многогранники, их проекции –пирамиды и призмы.
- •2) Пересечение плоскости с многогранником
- •3) Пересечение прямой с многогранником
- •Замена плоскостей проекций – сущность способа.
- •Решение 4 основных задач способом замены плоскостей проекций.
- •Способ вращения – сущность способа.
- •Решение четырех основных задач способом вращения.
- •Проекции плоских кривых.
- •Пространственные кривые – винтовые (цил-ие и кон-ие).
- •Способы образования поверхностей.
- •Каркас и определитель поверхности.
- •Поверхности вращения.
- •Линейчатые развертывающиеся поверхности.
- •Линейчатые поверхности с плоскостью параллелизма.
- •Винтовые поверхности.
- •Циклические поверхности.
- •I способ.
- •II способ.
- •III способ.
- •Пересечение поверхности с плоскостью.
- •Пересечение линии с поверхностью.
- •Пересечение поверхностей. Способ плоских сечений.
- •Пересечение поверхностей. Способ концентрических сфер.
- •Частные случаи пересечение поверхностей второго порядка – теоремы.
- •Плоскости, касательные к линейчатым поверхностям.
- •Плоскости, касательные к кривым поверхностям.
7. Следы прямой
Точка пересечения прямой с плоскостью проекций называется следом прямой.
Прямая общего положения пересекает все три плоскости проекция, следовательно, она имеет три следа:
M - горизонтальный след
N - фронтальный след
P - профильный след
M1 - горизонтальная проекция горизонтального следа
M2 - фронтальная проекция горизонтального следа
N1 - горизонтальная проекция фронтального следа
N2 - фронтальная проекция фронтального следа
Для нахождения горизонтального следа прямой необходимо:
На эпюре продолжить фронтальную проекцию прямой до пересечения её с осью х.
Из точки пересечения M2 - фронтальной проекции горизонтального следа, провести перпендикуляр до пересечения с горизонтальной проекцией прямой.
Точка пересечения M1 - горизонтальная проекция горизонтального следа, которая совпадает с самим горизонтальным следом M.
Для нахождения фронтального следа прямой необходимо:
На эпюре продолжить горизонтальную проекцию прямой до пересечения её с осью х.
Из точки пересечения N1 - горизонтальной проекции фронтального следа, провести перпендикуляр до пересечения с фронтальной проекцией прямой.
Точка пересечения N2 - фронтальная проекция фронтального следа, которая совпадает с самим фронтальным следом N.
Для нахождения профильного следа прямой:
l2 продолжить до пересечения с осью z.
Из точки пересечения P2 - фронтальной проекции профильного следа, провести перпендикуляр до пересечения с профильной проекцией прямой.
8. Взаимное расположение точки и прямой
Точка либо лежит на прямой либо нет.
Если точка принадлежит прямой, то её проекции должны принадлежать одноименным проекциям этой прямой (аксиома принадлежности точки прямой).
В тех случаях, когда точка и прямая лежат в плоскости уровня (параллельной какой-либо из плоскостей проекций П1, П2 и П3), то вопрос о взаимном расположении прямой и точки решается при построении проекций на плоскость соответственно П1, П2 или П3
Из свойств
параллельного проецирования известно,
что если точка делит отрезок прямой в
данном отношении, то проекции этой точки
делят одноименные проекции прямой в
том же соотношении.
9. Определение длин отрезка прямой( натуральная величина отрезка) и углов наклона прямой к плоскостям проекции
1) Методом прямоугольного треугольника.
2) Способ вращения. Способ вращения заключается в том, что отрезок прямой линии или плоскую фигуру вращают вокруг выбранной оси до положения, параллельного плоскости проекций. На рис. 173 показано, как определить способом вращения натуральную длину отрезка АВ прямой, наклонной к плоскостям проекций. На наглядном изображении (рис. 173, а) видно, что отрезок А В прямой не параллелен плоскостям проекций и, следовательно, проекции а'b' и ab отрезка изображаются искаженными. Нужно повернуть отрезок вокруг оси Аа, перпендикулярной к плоскости H, в направлении, указанном стрелкой, до положения, при котором отрезок станет параллельным плоскости V, т. е. в положение, обозначенное АВ1. Тогда горизонтальная проекция аb отрезка АВ расположится параллельно плоскости V (параллельно оси х); обозначим ее аb1. В этом положении проекция отрезка на плоскость V - линия а'b' представляет собой натуральную величину отрезка АВ. Построение на чертеже начинают с горизонтальной проекции (рис. 173, б). Из точки а, как из центра, радиусом, равным ab, описывают дугу окружности bb1 до пересечения с прямой, проведенной из точки а параллельно оси х. Получают новую горизонтальную проекцию b1 точки В. Фронтальную проекцию b`1 точки b1 получают, восставив из нее перпендикуляр к оси х. Соединив прямой точку а' с точкой b` получают натуральную длину отрезка АВ.
3)Способ замены плоскостей проекций. Этот способ отличается от способа вращения тем, что проецируемая линия или фигура остается неподвижной, а одну из плоскостей проекций заменяют новой дополнительной плоскостью, на которую и проецируют изображаемый элемент.
В пересечении новой плоскости Н1 с плоскостью V (рис. 174, а) получают новую ось проекций х1. Новую систему плоскостей на чертеже обозначают H1/V
Дополнительную плоскость проекций Н1 выбирают так, чтобы она была перпендикулярна фронтальной плоскости проекций V (рис. 174, а) и параллельна линии или плоскости фигуры, натуральную величину которой нужно определить. Линия или фигура спроецируется на дополнительную плоскость без искажений; новая ось проекций хх будет параллельна фронтальной проекции наклонной грани (рис. 174, б).
Рассматривая рис. 174, а и б, можно установить, что при перемене горизонтальной плоскости Н на новую Н1 расстояние новой горизонтальной проекции любой точки до оси проекций х1 будет равно расстоянию прежней горизонтальной проекции этой точки до прежней оси проекций, т. е. расстояние точки А от плоскости V остается неизменным. Этим и пользуются при построении проекций фигур на дополнительную плоскость, которую затем совмещают с плоскостью чертежа.
На рис. 174, а точка А спроецирована сначала на плоскости V и H, т. е. получены ее проекции а' и а. Затем взята дополнительная плоскость H1 перпендикулярная к плоскости V, и точка А спроецирована на дополнительную плоскость. Для этого из фронтальной проекции a` до точки А опущен перпендикуляр на плоскость H1 пересечение которого с плоскостью дало точку ах1. Затем от точки аx1 отложено расстояние, равное аах, и получена искомая проекция a1 точки А на дополнительную плоскость. Наклонная линия x1 на чертеже обозначает новую ось проекций. Важно отметить, что фронтальная и новая проекции точки А лежат на одном перпендикуляре к оси х1.
На рис. 174, б дано наглядное изображение четырехугольной призмы, верхняя грань которой наклонна. Чтобы определить натуральную величину верхней наклонной грани призмы, ее необходимо спроецировать на дополнительную плоскость. Построение проводят в следующем порядке. Вычерчивают фронтальную и горизонтальную проекции призмы. На произвольном расстоянии проводят новую ось проекции х1 параллельно фронтальной проекции изображаемой грани. Из фронтальных проекций вершин наклонной грани - точек а`, b`, с`, d' восставляют перпендикуляры к новой оси x1. На перпендикулярах от новой оси х1 откладывают отрезки, равные расстояниям горизонтальных проекций этих точек от оси х. Соединив полученные точки а1, b1, с1, d1 прямыми линиями, получают натуральную величину грани.
Длину отрезка АВ и a - угол наклона отрезка к плоскости П1 можно определить из прямоугольного треугольника АВС |AС|=|A1B1|, |BС|=DZ. Для этого на эпюре (рис.31) из точки B1 под углом 900 проводим отрезок |B1B1*|=DZ, полученный в результате построений отрезок A1B1* и будет натуральной величиной отрезка АВ, а угол B1A1B1*=a. Рассмотренный метод называется методом прямоугольного треугольника. Тот же результат можно получить при вращении треугольника АВС вокруг стороны AС до тех пор, пока он не станет параллелен плоскости П1, в этом случае треугольник проецируется на плоскость проекций без искажения. Подробнее вращение вокруг оси параллельной плоскости проекций рассмотрены в разделе «Методы преобразования ортогональных проекций».
Длину отрезка АВ и b-угол наклона отрезка к плоскости П2 можно определить из прямоугольного треугольника АВС |AС|=|A2B2|, |BС|=DY. Построения аналогичные рассмотренным, только в треугольнике АВВ* сторона |BВ*|=DU и треугольник совмещается с плоскостью П2
