- •2. Методы сопоставления (корреляции) разрезов и установления относительного геологического возраста отложений.
- •3. Международная стратиграфическая шкала. Принципы её построения, основные подразделения, назначение и способ использования.
- •4. Биостратиграфические методы расчленения и сопоставления (корреляции) разрезов.
- •5. Геофизические методы стратиграфии: палеомагнитная стратиграфия, каротаж, сейсмические методы.
- •6. Сопоставление разрезов морских и континентальных отложений.
- •7. Методы абсолютной геохронологии.
- •8. Принципы актуализма; его место и значение для палеогеографических реконструкций.
- •9. Понятие о фациях; фациальный анализ и восстановление палеогеографических условий геологического прошлого.
- •10. Фациальные области моря. Литологические и палеонтологические признаки, определяющие условия накопления морских отложений.
- •13. Характер осадконакопления и магматизма в геосинклинальных областях и на платформах.
- •15. Орогенические (складкообразовательные) движения земной коры и методы их изучения.
- •16. Эпейрогенические движения земной коры и методы их изучения.
- •17. Крупные горизонтальные перемещения литосферных плит. Методы их изучения.
- •18. Главные структурные элементы земной коры. Строение земной коры континентов и океанов.
- •19. Представление о геосинклинальной, орогенной и платформенных стадиях развития структур земной коры.
- •20. Основные структурные элементы материковой части земной коры (древние платформы, складчатые области разного возраста).
- •21. Структурные элементы платформ. Стадии формирования осадочного чехла платформ.
- •23. Определение возраста магматических образований.
- •24. Краевые прогибы.
- •25. Пангея-1, Гондвана, Лавруссия и Пангея-2. Их возникновение, геологическая история и распад.
- •26. Протогейский (архей, ранний протерозой) этапы развития земной коры.
- •27. Особенности палеогеографии, осадконакопления и магматизма в протогее (архей и ранний протерозой).
- •28. Позднепротерозойский этап развития структуры земной коры.
- •29. Палеогеография и осадконакопление в позднем протерозое.
- •30. Развитие органического мира в докембрии.
- •31. Развитие структуры земной коры в раннем палеозое.
- •32. Палеогеография и осадконакопление в раннем палеозое.
- •33. Развитие органического мира в раннем палеозое.
- •Насекомые
- •Пермско-триасовое вымирание видов
- •Тектоника
- •34. Развитие структуры земной коры в позднем палеозое
- •Развитие геосинклинальных областей в позднем палеозое
- •1. Северо-Атлантический пояс
- •3. Уральская геосинклинальная область
- •Гондвана
- •35. Палеогеография и особенности осадконакопления в позднем палеозое.
- •36. Развитие органического мира в позднем палеозое. Рубеж палеозой-мезозой в развитии разных групп органического мира.
- •37. Развитие структуры земной коры в мезозое.
- •38. Палеогеография и особенности осадконакопление в мезозое.
- •39. Развитие органического мира в мезозое. Рубеж мезозой-кайнозой в развитии разных групп органического мира.
- •40. Развитие земной коры в кайнозое.
- •40. Развитие земной коры в кайнозое.
- •41. Развитие органического мира в кайнозое. Граница мезозой-кайнозой в развитии органического мира.
- •41. Развитие органического мира в кайнозое. Граница мезозой-кайнозой в развитии органического мира.
- •42. Четвертичный период.
- •43. Талассократические и геократические эпохи фанерозоя.
- •44. Гондвана: её возникновение, геологическая история и распад.
- •45. Лавразия: её возникновение и геологическая история в мезозое и кайнозое.
- •46. Материковые оледенения в истории Земли.
- •47. Древние платформы северного полушария в палеозое. Развитие древних платформ (с байкалидами).
- •48. Геосинклинальные пояса Тихоокеанского кольца в мезозое и кайнозое.
- •49. Развитие геосинклинальных поясов в раннем палеозое
- •Общий характер развития геосинклинальных поясов в pz1.
- •50.Развитие геосинклинальных областей в позднем палеозое
- •51. Океанические впадины в мезозое и кайнозое.
4. Биостратиграфические методы расчленения и сопоставления (корреляции) разрезов.
В основе палеонтологических методов лежит закон о необратимости эволюции органического мира: каждому отрезку геологического времени отвечают характерные только для него растения и животные; значит, одновозрастные отложения близкого происхождения содержат сходные комплексы органических остатков. В истории развития организмов не было повторения одинаковых растений и животных.
Стратиграфические подразделения, выделяемые на основе палеонтологического метода – биостратиграфические.
Их номенклатура: зоны, слои с фауной или флорой.
Значение различных групп фауны для биостратиграфии неодинаково. Есть группы, позволяющие проводить планетарные корреляции (например, мезозойские аммониты, ордовикские и силурийские граптолиты); их называют архистратиграфическими. Это преимущественно пелагические планктонные и нектонные формы, быстро расселявшиеся по всему свету.
Другие группы, главным образом донные организмы, распространявшиеся в личиночной стадии, менее пригодны для широкой корреляции, но они играют ведущую роль в региональной биостратиграфии. Для исследования закрытых районов, изучаемых при помощи буровых скважин, огромное значение приобретают микроскопические органические остатки (микрофоссилии) животного, растительного и даже невыясненного происхождения. К микрофоссилиям относятся скелеты мелких животных (фораминифер, радиолярий, остракод), некоторых водорослей, споры и пыльца высших растений, мелкие фрагменты скелета (конодонты, чешуйки рыб). Для выделения биостратиграфических подразделений и определения геологического возраста биостратиграфия использует методы: руководящих ископаемых, комплексного анализа, количественный (процентно-статистический), филогенетический, палеоэкологический.
5. Геофизические методы стратиграфии: палеомагнитная стратиграфия, каротаж, сейсмические методы.
Геофизические методы близки к литологическим и основаны на сравнении пород по их физическим свойствам. Они применяются для корреляции разрезов между собой и с опорным разрезом, возраст отложений которого определен другими методами.
Широко используется анализ результатов каротажа (геофизических исследований скважин). Наиболее распространен электрический каротаж. По необсаженной скважине (без колонковых труб) непрерывно измеряют естественное электрическое поле (потенциал собственной поляризации – ПС) и кажущееся удельное сопротивление (КС – сопротивление поровых вод и частично самой породы). Разница в значениях ПС и КС позволяет различать обломочные, глинистые и карбонатные породы, выделять рудные тела, пласты насыщенные нефтью.
Например, на диаграммах ПС пески и песчаники будут выделяться минимумами, а КС, наоборот,—максимумами. Радиоактивный каротаж состоит в измерении естественной радиоактивности и радиоактивности, возникающей при искусственном облучении. Повышенной радиоактивностью обладают глинистые породы, калийные соли, а низкой—ангидрит, гипс, доломиты, известняки, песчаники. Применяют еще акустический, термический, механический и другие виды каротажа. Результаты каротажа опорной
скважины получают геологическое объяснение при сравнении их с данными изучения керна. Сопоставляя диаграммы различных видов каротажа, можно установить литологический состав и последовательность пород в скважине, их мощность, выделить маркирующие горизонты и провести корреляцию с геологическими разрезами, вскрытыми другими скважинами.
Палеомагнитный метод основан на явлении палеомагнетизма. Магнитное поле, существовавшее в геологическом прошлом, зафиксировано в горных породах. При своем образовании горные породы намагничивались по направлению геомагнитного поля того времени и места, где они возникали. Вектор первичной намагниченности сохранился в горной породе и может быть определен. «Окаменевший геомагнетизм» позволяет сопоставлять отложения и выяснять их возраст. В геологической истории Земли менялось положение магнитных полюсов; не оставалось постоянным и расположение крупных блоков земной коры. Вместе с тем установлено, что одновозрастные породы в пределах таких блоков
обладают одинаковым вектором первичной намагниченности. По массовым наблюдениям, выполненным в разных блоках, удается определить положение магнитных полюсов. В течение геологической истории геомагнитное поле претерпело множество инверсий (обращений полярности), в результате чего в разрезах осадочных и вулканических образований чередуются зоны прямой (совпадающей с современной) и обратной намагниченности. Геомагнитные инверсии — события глобального масштаба, поэтому возможна хронологическая корреляция прямо и обратно намагниченных по-
род по всему миру.
Геомагнитные инверсии проявлялись во времени неравномерно. Длительные интервалы прямой или обратной намагниченности чередовались с интервалами частых инверсий. Этот процесс подчиняется сложной ритмичности. При изучении полных стратиграфических разрезов выявляются интервалы сгущений и разрежений инверсий, а также их характерные последовательности. На этой основе построена магнитостратиграфическая шкала фанерозоя России, которая дает возможность корреляции разрезов по палеомагнитным данным и определения относительного возраста отложений при сопоставлении с этой шкалой.
Стратиграфические подразделения, выделенные этим методом – магнитозоны разного порядка (по кодексу). Геофизические методы используются для расчленения и корреляции разрезов.
