Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КЗИ-2003.полный19.11 крипто.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
49.78 Mб
Скачать

4.1.3. Вычисление координат точки [8]g, как результат удвоения точки [4]g:

- вычисление углового коэффициента касательной в точке [4]G = (X4; Y4) = (86; 71)

K = mod P = mod 293 = mod 293 = 22196 * 142-1 mod 293 = 22196 * 142291 mod 293 = 22196 * 130 mod 293 = 221 * 130 mod 293 = 28730 mod 293 = 16 mod 293 → 16.

- вычисление координат точки [8]G = (X8; Y8)

X8 = (K2 – 2X4) mod P = (162 - 2*86) mod 293 = 84 mod 293 → 84;

Y8 = (K*(X4 – X8) – Y4) mod P = (16*(86 – 84) – 71) mod 293 =

= 254 mod 293 → 254.

Следовательно, [8]G = (X8; Y8) = (84; 254), координаты точки [8]G определены как X8 = 84; Y8 = 254.

4.1.4. Вычисление координат точки [16]g , как результат удвоения точки [8]g:

- вычисление углового коэффициента касательной в точке [8]G = (X8; Y8) = (84; 254)

K = mod P = mod 293 = mod 293 = 21176 * 508-1 = 21176 * 508291 mod 293 = 80 * 154 mod 293 = 12320 mod 293 =

= 14 mod 293 → 14.

- вычисление координат точки [16]G = (X16; Y16)

X16 = (K2 – 2X8) mod P = (142 - 2*84) mod 293 = (196 – 168) mod 293 =

= 28 mod 293 → 28;

Y16 = (K*(X8 – X16) – Y8) mod P = (14*(84 – 28) – 254) mod 293 = (784 – 254) mod 293 = 530 mod 293 = 237 mod 293 → 237.

Следовательно, [16]G = (X16; Y16) = (28; 237), координаты точки [16]G определены как X16 = 28; Y16 = 237.

4.1.5. Вычисление координат точки [32]g , как результат удвоения точки [16]g:

- вычисление углового коэффициента касательной в точке [16]G = (X16; Y16) = (28; 237)

K = mod P = mod 293 = mod 293 = 2360 * 474-1 mod 293 = 2360 * 474291 mod 293 = 16 * 34 mod 293 = 544 mod 293 =

= 251mod 293 → 251.

- вычисление координат точки [32]G = (X32; Y32)

X32 = (K2 – 2X16) mod P = (2512 - 2*28) mod 293 = (63001 – 56) mod 293 = = 62945 mod 293 = 243 mod 293 → 243;

Y32 = (K*(X16 – X32) – Y16) mod P = (251*(28 – 243) – 237) mod 293 = - 54202 mod 293 = - 290 mod 293 = ( 293 – 290) mod 293 = 3 mod 293 → 3.

Следовательно, [32]G = (X32; Y32) = (243; 3), координаты точки [32]G определены как X32 = 243; Y32= 3.

4.1.6. Вычисление координат точки [64]g , как результат удвоения точки [32]g:

- вычисление углового коэффициента касательной в точке [32]G = (X32; Y32) = (243; 3)

K = mod P = mod 293 = 177155 * 6-1 mod 293 =

= 177155 * 6291 mod 293 = 183 * 49 mod 293 = 8967 mod 293 = 177 mod 293 → 177.

- вычисление координат точки [64]G = (X64; Y64)

X64 = (K2 – 2X32) mod P = (1772 - 2*243) mod 293 = 30843 mod 293 = 78 mod 293 → 78;

Y64 = (K*(X32 – X64) – Y32) mod P = (177*(243 – 78) – 3) mod 293 = 29202 mod 293 = 195 mod 293 → 195.

Следовательно, [64]G = (X64; Y64) = (78; 195), координаты точки [64]G определены как X64 = 78; Y64 = 195.

4.1.7. Вычисление координат точки [128]g , как результат удвоения точки [64]g:

- вычисление углового коэффициента касательной в точке [64]G = (X64; Y64) = (78; 195)

K = mod P = mod 293 = mod 293 = 18260 * 390291 = 94 * 145 mod 293 = 13630 mod 293 = 152 mod 293 → 152.

- вычисление координат точки [128]G = (X128; Y128)

X128 = (K2 – 2X64) mod P = (1522 - 2*78) mod 293 = 22948 mod 293 = 94 mod 293 → 94;

Y128 = (K*(X64 – X128) – Y64) mod P = (152*(78 – 94) – 195) mod 293 =

= 10 mod 293 → 10.

Следовательно, [128]G = (X128; Y128) = (94; 10), координаты точки [128]G определены как X128 = 94; Y128 = 10.