
- •1. Аномальные и структурные особенности воды.
- •2. Виды воды в горн. Породах. Влагоёмкость. Её виды.
- •3. Магнитные св-ва пород. Типы горн. Пород по магнитным св-вам.
- •4. Особые электрические св-ва пород и минералов.
- •6. Вызванная поляризация пород и её виды
- •7. Естественная поляризация пород. Виды поляризации.
- •8. Тепловой поток. Теплопроводность. Температуропроводность.
- •9. Структура парового пространства пород. Глинистость. Удельная поверхность.
- •10. Движение жидкости в гидрофильных и гидрофобных коллекторах.
- •11.Нефте-, газо- и водонасыщенность пород. Виды проницаемости коллектора.
- •12. Строение атома. Изотопы. Устойчивость.
- •13. Электропроводность коллекторов.
- •14. Радиоактивность. З-ны радиоактивного распада. Радиоактивные ряды.
- •15. Плотность минералов пород. Факторы, опред. Плотность.
- •16. Уровни неоднордностей геолог. Тел.
- •17. Электропроводность горных пород. Виды электропроводности. Анизотропия.
- •18. Двойной электрический слой дэс. Виды. Влияние на движение жидкости.
- •19 Плотность минералов осадочных горных пород.
- •20. Происхождение пористого пространства. Виды пористости. Коэффициенты.
- •21. Процессы в зоне внк.
- •22. Модель пористой среды. Зависимость пористости от укладки зерен
- •24. Движение жидкости в трещиновато-пористых пластах.
- •25. Вытеснение нефти водой.
- •26. Взаимодействие радиоактивных излучений с веществом.
- •27. Деформация горных пород
- •28. Апд. Механизм образования.
- •29. Фильтрация газированной жидкости.
- •30. Образование горизонт. И вертик. Трещин при гидроразрыве пласта.
- •32. Влияние давления, глубины на пористость пород.
- •33. Влияние структуры и глинистости на экранирующие св-ва флюидоупоров.
- •34. Вытеснение нефти горячей водой, паром.
- •35. Вытеснение нефти водой из пористой среды. Капиллярная пропитка.
- •36. Условие устойчивой зависимости между пористостью и проницаемостью.
- •37. Вытеснение нефти внутри пластовым горением.
- •38. Влияние силы тяжести на распределение нефти, газа и воды в залежи.
- •39. Фильтрация не Ньютоновских жидкостей.
- •40. Влияние литологии на коллекторские св-ва.
- •41. Геостатическое, Геодинамическое, Горное, Пластовое давления. Их взаимосвязь.
12. Строение атома. Изотопы. Устойчивость.
Атом - наименьшая частица элемента. Атом имеет положительно заряженное ядро, вокруг которого вращаются отрицательно заряженные электроны. Их число равно заряду ядра. Ядро имеет размер около 10-12 см и в нем сосредоточено 99,97% всей массы атома, хотя объем, занимаемый ядром, ничтожно мал в сравнении с объемом всего атома. Атомное ядро состоит из протонов и нейтронов - элементарных частиц, называемых нуклонами.
Протон - положительно заряженная частица. Нейтрон - электрически нейтральная частица. При определенных условиях он преврается в протон и электрон. Число протонов в ядре определяет химический элемент. Число электронов соответствует числу протонов.
Одноименно заряженные частицы - протоны - отталкивают друг друга, но эта сила нейтрализуется ядерными силами притяжения, действующими на очень близких расстояниях. По мере возрастания числа протонов силы отталкивания увеличиваются и могут превзойти ядерные силы сжатия. Нейтрализовать силу отталкивания протонов помогают нейтроны.
Электроны располагаются на оболочках упорядоченно. Каждая оболчка, за исключением внешней, полностью заполнена и имеет свой энергетический уровень, в котором может находиться строго определенное число электронов. Энергетические уровни по порядку от ядра заполняются электронами в количестве 2, 8, 18, 18, 32, 32. За исключением первого, остальные энергетические уровни состоят из подуровней.
Химические свойства элементов зависят от общего количества электронов и их количества на внешней оболочке, так как они взаимодействуют при химических реакциях. Атомы с заполненными электронными внешними оболочками химически наиболее устойчивы. Например: гелий, неон, аргон, криптон, ксенон, радон.
Изотопы. Элементы, имеющие одинаковое число протонов, но разное количество нейтронов, называются изотопами. Например, кислород имеет шесть изотопов: О14, О15, О16, О17, О18, О19 хотя один и тот же заряд.
То есть масса разных изотопов кислорода составляет 14, 15, 16, 17, 18, 19 атомных единиц. Это значит, что в ядрах элемента кислорода может быть разное количество нейтронов.
13. Электропроводность коллекторов.
Электропроводность горных пород может осуществляться с переносом вещества (ионная и ионно-электронная проводимость) и без переноса вещества (электронная и дырочная проводимость). Признаком электронной проводимости является эффект Холла, заключающийся в том, что при внесении образца в поперечное магнитное поле перпендикулярно направлению тока возникает разность потенциалов
Ионный характер электропроводности имеют все аморфные минералы, галоидные соединения, нитраты, сульфаты и т. д.
По величине электропроводности все вещества делятся на проводники, полупроводники и диэлектрики. Квантовая теория разную электропроводность веществ объясняет различиями в энергетической схеме их кристаллов (рис.7.1).
Свободным носителем тока может стать лишь электрон, находящийся в зоне проводимости. Для того чтобы электрон мог попасть в зону проводимости, необходимо некоторое энергетическое воздействие на него. Величина этого воздействия зависит от ширины так называемой запрещенной зоны, отделяющей валентную зону обращения электронов от зоны проводимости.
В случае проводника запрещенная зона отсутствует. Приобретая под влиянием внешних факторов дополнительную кинетическую энергию, электроны легко переходят в зону проводимости и становятся способными переносить заряды. В случае полупроводника запрещенная зона имеет определенную ширину. Она выражается количеством энергии, которую необходимо затратить электрону для того, чтобы перейти в зону проводимости. В диэлектриках запрещенная зона имеет ширину превышающую работу вырывания иона из узла кристаллической решетки. Поэтому проводимость металлов и полупроводников — электронная, проводимость диэлектриков — ионная.
Примеси атомов в металле всегда снижают его электропроводность. Это явление объясняется искажением кристаллической решетки основного металла и рассеянием электронных волн.
Любые примеси в диэлектриках увеличивают их электропроводность, так как искажения кристаллической решетки облегчают вырывание из нее ионов.
В полупроводниках, содержащих примеси, электропроводность увеличивается. Растет концентрация электронов — носителей тока.
Повышение температуры уменьшает электропроводиость проводников, так как возросшие тепловые колебания ионов решетки тормозят движение электронов. В диэлектриках происходит обратное явление. С повышением температуры подвижность ионов увеличивается, растет их кинетическая энергия и облегчается их вырывание из решетки. Поэтому электропроводность диэлектриков возрастает. В полупроводниках повышение температуры ведет к увеличению концентрации электронов и соответственно росту электропроводности пород.