
- •5. Корень - подземная часть вегетативного тела растения, закрепляющая его в почве. Появился впервые у сосудистых растений.
- •7. Лист - плоский боковой орган побега.
- •Размножаются мхи спорами.
- •26. Плауны
- •28. Щито́вник (лат. Dryópteris) — род папоротников из семейства Щитовниковые (Dryopteridaceae).
- •4. Аскарида человеческая, острица, власоглав, ришта, трихинелла
- •5. Насчитывает ок. 7 000 видов. Это обитатели водоемов и почвы. Включает 3 класса:
- •6. Тип моллюски включает три класса: медленно ползающие улитки (брюхоногие), относительно оседлые двустворчатые и подвижные головоногие. Тип насчитывает около 130 000 видов.
- •10) Лягушки
- •11. Хвостатые земноводные
7. Лист - плоский боковой орган побега.
Внешнее строение листа. У двудольных растений лист состоит из плоской расширенной пластинки и стеблевидного черешка с прилистниками. Для листьев однодольных , растений характерно отсутствие черешков, основание листа, у них расширено, во влагалище, охватывающее стебель. У зЛаков влагалищем покрыто все междоузлие: Листья двудольных растений бывают простые и сложные. Простые листья имеют одну листовую пластинку, иногда сильно расчлененную на лопасти. Сложные листья имеют несколько листовых пластинок с выраженными черенками. Перистосложные листья имеют осевой черешок, по обе стороны которого расположены листочки. Пальчатосложные листья имеют листочки, отходящие веером от верхушки основного черешка.
Внутреннее строение листа. Снаружи листа находится кожица из бесцветных клеток, покрытая воскоподобным веществом - кутикулой. Под кожицей расположены клетки столбчатой паренхимы, содержащие хлорофилл. Глубже находятся клетки губчатой паренхимы с межклетниками, заполненными воздухом. В паренхиме расположены сосуды проводящего пучка. На нижней поверхности листьев кожица имеет устьичные клетки, участвующие в испарении воды. Испарение воды происходит для предотвращения перегрева листа через устьица эпидермы (кожицы). Этот процесс называется транспирацией и обеспечивает постоянный ток воды от корней к листьям. Скорость транспирации зависит от влажности воздуха, температуры, света и т.д. Под воздействием этих факторов меняется тургор замыкающих клеток устьиц, они замыкаются или смыкаются, задерживая или усиливая испарение воды и газообмен. В процессе газообмена в клетки поступает кислород для дыхания или выводится в атмосферу в процессе фотосинтеза.
Видоизменения листьев: усики - служат для закрепления стебля в вертикальном положении; иглы (у кактуса) играют защитную роль; чешуйки - мелкие листочки, потерявшие свою фотосинтезирующую функцию; ловчий аппарат - листья снабжены столбчатыми железами, выделяющими слизь, которая используется для захвата мелких насекомых, попавших на лист.
8. Стебель - это осевая часть побега, несущая листья, цветы, соцветия и плоды. В этом заключается опорная функция стебля. К другим функциям стебля относятся; транспортная - проведение воды с растворенными в ней веществами от корня к наземным органам; фотосинтезирующая; запасающая - отложение в его тканях белков, жиров, углеводов.
Ткани стебля:
Проводящая: внутреннюю часть коры представляют ситовидные трубки и клетки-спутницы луба (флоэма), ближе к центру расположены клетки древесины (ксилеме), по которым осуществляется транспорт веществ.
Покровная - кожица у молодых и пробка у старых одревесневших стеблей.
Запасающая - специализированные клетки луба и древесины.
Образовательная (камбий) - постоянно делящиеся клетки, дающие напало всем тканям стебля. За счет деятельнсти камбия стебель растет в толщину, и образуются годичные кольца.
Видоизменения стеблей: клубень -запасающий подземный побег; вся масса клубня состоит из запасающей паренхимы вместе с проводящей тканью (картофель); луковица — укороченный конический стебель с многочисленными видоизмененными листьями - чешуями и укороченным стеблем - донцем (лук, лилия); клубнелуковицы (гладиолус, крокус и др.); кочан - сильно укороченный стебель с толстыми, перекрывающими друг друга листьями.
11. Лист представляет собой внешний орган растения, который выполняет такие важные функции, как фотосинтез, дыхание, транспирацию (испарение) и гуттацию (выделение воды в виде капель). Возможно вегетативное размножение растений посредством листьев. Кроме вышеперечисленных функций, листья некоторых растений способны запасать воду и органические вещества. А видоизмененные листья отдельных видов растений (усики, колючки, ловчие аппараты насекомых) выполняют еще ряд важных функций, благодаря чему растение приспосабливается к неблагоприятным условиям окружающей среды.
Основные физиологические процессы, протекающие в зеленой мякоти листа (мезофилле) – это фотосинтез и дыхание. Суть фотосинтеза заключается в том, что происходит усвоение углекислого газа и воды растениями из внешней среды и преобразование их в органические вещества под воздействием фотосинтетического пигмента (хлорофилла) с помощью поглощенной энергии света. Растения, точнее их листья, можно представить как фабрику, которая с помощью энергии Солнца производит большую часть органических веществ на нашей планете. Воду для осуществления фотосинтеза растения получают из грунта, а углекислый газ – из воздуха. Углерод углекислого газа – это основа для образования молекул органических веществ. Во время фотосинтеза растения, разлагая воду, выделяют из нее кислород. Таким образом, атмосфера Земли обогащается кислородом, благодаря жизнедеятельности растений. Интенсивность протекания процесса фотосинтеза в листьях растений зависит от температуры окружающей среды, освещенности, концентрации углекислого газа, поступления воды к листьям растения.
Кроме фотосинтеза, в клетках листьев происходит дыхание - процесс, обратный фотосинтезу. При дыхании органические вещества окисляются с освобождением связанной в них энергии, которая необходима растениям для обеспечения их жизнедеятельности. Процесс дыхания обусловлен всасыванием кислорода и выделением в атмосферу углекислого газа. Но интенсивность фотосинтеза в листьях превышает интенсивность дыхания, поэтому значительно большее количестве кислорода выделяется в атмосферу, чем поглощается при дыхании. В процессе дыхания также синтезируются соединения, которые используются для образования углеводов, белков и других веществ, имеющих для растения большое значение. Скорость протекания процессов дыхания зависит от влияния определенных факторов внешней среды, к примеру, температуры, содержания углекислого газа в воздухе. Наиболее активно дыхание происходит в растущих участках растения. Это легко объяснить тем, что молодым клеткам требуется много энергии для роста.
В листьях растений осуществляется испарение воды (транспирация) и выделение воды в виде капель (гуттация). Вода – это основная внутриклеточная среда, где происходят все жизненные процессы растения. Из всего количества воды, которое проходит через тело растения, только 0,2% им усваивается. Остальная часть воды также имеет важное значение для жизнедеятельности растения. Выведение водяного пара через устьица и чечевички называется испарением воды или транспирацией. В случае если корневая система поглощает больше воды, чем листья могут вывести ее путем испарения, наблюдается выведение капель жидкой воды через листья. Этот процесс называется гуттацией. Вода испаряется через все участки тела растения, но интенсивнее – через листья. Скорость испарения регулируется устьицами. Благодаря транспирации, создается непрерывное движение воды, что облегчает передвижение растворенных в воде минеральных солей внутри растения. Также испарение понижает температуру листьев, что спасает растение от перегревания. На интенсивность транспирации и гуттации влияют влажность, наличие ветра и температура воздуха.
Посредством листьев возможно осуществление вегетативного размножения растения, позволяющее сохранить у потомства биологические свойства и признаки материнского растения, к примеру, пирамидальность, окраску цветка, разрезолистность, т.д. Многие комнатные растения выращивают из частей листа. Это обычный способ размножения глоксинии, сенполии, некоторых видов бегонии, мелколистной пеперомии. Листья этих растений очень короткие, и формируется розетка из них. Стебли этих растений нарезать не представляется возможным, а листовыми черенками их легко размножить. Чистые сорта растений, обладающие ценными качествами (запах, махровость, цвет, т.п.), можно сохранить исключительно при вегетативном размножении листьями.
Листья некоторых растений видоизменены, благодаря чему выполняют некоторые другие функции, не характерные для типичных листьев покрытосеменных растений. Так, листья, трансформированные в колючки, уменьшают испарение воды и выполняют защитную функцию. Листья, превратившиеся в усики, обеспечивают растениям (гороху, чине) усиление опорной функции стебля. У алоэ сочные крупные листья превратились в депо воды и питательных веществ. Можно привести еще много примеров выполнения листьями различных фунций, помимо основных, о которых было рассказано выше.
К. А. Тимирязев оставил богатое наследство в виде научных и научно-популярных работ для потомков. Ключевые исследования ученого по физиологии растений были посвящены изучению процессов фотосинтеза. Он придумал и разработал специальные методики и необходимые аппараты.
К. А. Тимирязев исследовал зависимость фотосинтеза от интенсивности света и его спектрального состава и при этом установил, что из углекислого газа, находящегося в воздухе, растения ассимилируют углерод за счет энергии солнечного света. Им было экспериментально подтверждено, что в красных и синих лучах, которые наиболее полно поглощаются хлорофиллом, процессы проходят эффективнее. Именно Тимирязеву принадлежит идея, что хлорофилл как физически, так и химически принимает участие в процессе фотосинтеза. Далее он развил свою теорию и опубликовал работу «Зависимость усвоения углерода от интенсивности света» в 1889 году. По сути, ученый на практике доказал, что процесс фотосинтеза подчиняется закону сохранения энергии и первому закону фотохимии.
В 1903 году в Лондонском королевском обществе Тимирязев прочитал лекцию под названием «Космическая роль растения», где обобщил собственные исследования в течение многих лет в области фотосинтеза. В ней он привел доказательства того, что фотосинтез, осуществляемый зелеными растениями, является первоисточником органического вещества и энергии, без которых жизнедеятельность растений невозможна. Это открытие стало крупнейшим вкладом в мировое учение о неразрывной связи и единстве живой и неживой материи, которая участвует у непрерывном круговороте как веществ, так и энергии на нашей планете.
Надо отдать должное уважение прозорливому ученому, т.к. он занимался не только чистой наукой, а видел твердую основу для рационального прикладного земледелия. В 1867 году Тимирязев заведовал опытным полем, которое было организованно на средства Вольного экономического общества и располагалось в селе Реньевке Симбирской губернии. Там проводились испытания по применению минеральных удобрений и фиксировались их воздействия на урожай. Далее в 1872 был построен один их первых в Европе вегетационных домиков, где проводятся уникальные для того времени опыты. Благодаря разработкам ученого появлялись новые методы по минимизации влияний засухи на урожай. Для своих исследований Тимирязев создал новую аппаратуру, которая стала прототипом многих современных приборов.
Тимирязев выступал активным пропагандистом внедрения научных достижений на практике. Он считал, что должен не только изучать, описывать и объяснять процессы, происходящие с растениями, но также научиться управлять ими. Он видел грандиозные перспективы в модернизации сельского хозяйства с тем условием, что полезные и необходимые культурные растения будут улучшаться при разумном вмешательстве человека. Например, уже в те годы Тимирязев настаивал на целесообразности выведения новых сортов, которые должны иметь мощную корневую систему или пониженную транспирацию, объясняя это тем, что таким образом повысится продуктивность транспирации при использовании удобрений. Под влиянием ученого в сельском хозяйстве стали применять вегетативный метод и стали создавать заводы для производства селитры. Многие проекты, которые Тимирязев не успел осуществить лично, позже были реализованы его последователями и убедительно доказали правоту великого ученого. Например, Тимирязев был убежден, что выращивание растений при электрическом освещении приобретет производственное значение в масштабах целых государств.
Тимирязев имел уникальное качество – простым доступным языком излагать сложные научные мысли. С ним могли на равных общаться не только высокообразованные специалисты, а также простые крестьяне. Тем более, что они были крайне заинтересованны в советах ученого. Значение работ Тимирязева для науки имеет еще и то значение, что благодаря им наука стала более демократической. Его книга «Жизнь растений» выдержала десятки изданий на русском и многих иностранных языках, при этом она остается интересна как для студентов, преподавателей, так и для популярного чтения всех желающих.
12. Цветок — это укороченный и ограниченный в росте побег, выполняющий генеративную функцию. Состоит из: цветоножки, цветоложа с чашелистиками и лепестками (околоцветник), а также тычинок и плодолистиков. Чашелистики произошли от верхних вегетативных листьев и служат для защиты цветка в бутоне, их совокупность называется чашечкой. Леяестки служат для привлечения опылителей. Совокупность лепестков образует венчик. Он.бывает раздельнолепестный сростнолепестным.
Тычинки цветка представляют собой микроспорофиллы и состоят из тычиночной нити и пыльника с двумя пыльцевыми мешками, или микроспорангиями. Количество тычинок может быть от одной (семейство орхидейные) до сотен. Совокупность тычинок в цветке образует андроцей. Тычинки могут быть сросшимися и свободными. Каждая половинка пыльника имеет два (реже одно) гнезда - микроопорангия. Гнезда пыльника заполнены материнскими клетками микроспор, микроспорами и зрелой пыльцой. В пыльниках осуществляются микроспорогенез и микрогаметогенез. Пыльцевое зерно является незрелым гаметофитом. В пыльцевом зерне в результате мейоза материнской клетки формируются две гаплоидные клетки: клетка трубки и генеративная клетка, которая позднее делится на два спермия. Проросшее пыльцевое зерно с ядром трубки и двумя спермиями представляет собой зрелый мужской гаметофит.
Верхняя часть цветка занята плодолистиком, включающим семязачаток, или мегаспорофилл. Верхние концы Плодолистиков вытягиваются в столбик, заканчивающийся рыльцем, который обычно состоит из двух лопастей. Совокупность плодолистиков в цветке называется гинецевм. В зависимости от положения различают верхнюю, полунижнюю и нижнюю завязи. Семязачатки располагаются на плацентах завязи, в которых происходят макроспорогенез - формирование макроспор и макрогаметогенез - формирование женского гаметофита, а также процесс оплодотворения.
Семязачаток после оплодотворения заключенной в нем яйцеклетки развивается в семя. Семязачаток состоит из центральной части - нуцеллуса, одного или двух покровов - иитогументоа, которые на верхушке нуцеллуса образуют канал - микропиле. В семязачатке различают апикальную (верхушечную) часть - микропилярную и противоположную ей халазальную часть. От халазы отходят интигументы.
Женский гаметофит развивается из материнской клетки мегаспоры, находящейся внутри семяпочки. В результате мейоза материнской клетки образуются четыре гаплоидных мегаспоры, три из которых отмирают. Четвертая клетка развивается в женский гаметофит, который в зрелом состоянии представляет собой восьмиядерный зародышевый мешок. Этот мешок включает: яйцеклетку, две вспомогательные клетки-синергиды, расположенные у микропиле, центральную двуядерную клетку, и три клетки-антиподы, находящиеся на противоположном конце от микропиле.
У покрытосеменных растений в цветках есть особые железки-нектарники, которые вырабатывают сахаристую жидкость - нектар, имеющий в своем составе гормоны и бактерицидные вещества. Нектарники привлекают насекомых-опылителей и влияют на процесс оплодотворения и развития семени и плода.
Цветки могут быть однополыми и обоеполыми. Обоеполые цветы содержат и тычинки и пестики, а однополые содержат либо андроцей, либо гинецей и могут развиваться на одном растении (однодомные) и на разных растениях (двудомные).
Цветки могут быть симметричными и асимметричными. Симметричные цветки делятся на актиноморфные (симметричные по всем направлениям) и зигоморфные (имеющие одну ось симметрии), например горох. Асимметричный цветок не-. возможно разделить на две равные части.
Цветки могут быть одиночными или собраны в соцветия.
Простые соцветия: кисть, зонтик, головка, колос.
Сложные доцветия: корзинка, сложный зонтик, щитрк, сложный колос.
Биологическое значение соцветий: соцветия увеличивают вероятность опыления цветков при экономии материала. Из органических веществ, которые идут на строительство одного крупного цветка, растение создает множество мелких цветков, при этом резко возрастает количество плодов, созревающих на растении. У ветроопыляемых растений соцветия облегчают перекрестное опыление.
13. Опыление - это процесс переноса пыльцы с пыльника на рыльце пестика у цветковых растений и на микрополе семязачатка голосеменных. Опыление предшествует оплодотворёнию. Различают самоопыление и перекрестное опыление. Самоопыление осуществляется в распустившихся цветках, иногда в нераспустившихся. Перекрестное опыление свойственно большинству цветковых растений. Оно обеспечивав обмен генами, поддерживает высокий уровень гетерозиготности популяций, определяет целостность и единство вида. Перекрестное опыление заключается в переносе пыльцы с одного цветка на другой на одном и том же растении или на рыльце пестика другого растения. Оно осуществляется насекомыми (мак), при помощи ветра (рожь, береза), а также с помощью воды, птиц и других животных. Цветки насекомоопыляемых растений бывают преимущественно яркими, имеют запах, липкую пыльцу с выростами, выделяют нектар. У ветро-опыляемых растений цветки мелкие, не имеют яркой окраски и аромата и обычно собраны в соцветия. Пыльники, в которых образуется много мелкой, сухой и легкой пыльцы, расположены на длинных тычиночных нитях. Рыльца пестиков таких растений широкие, длинные или перистые - приспособленные к улавливанию пыльцы.
Оплодотворение
Оплодотворение происходит после опыления. У некоторых растений оплодотворение происходит через несколько дней или недель, у сосны — даже через год. Для осуществления оплодотворения необходимо, чтобы пыльца была зрелой и жизнеспособной, а в семязачатке должен сформироваться зародышевый мешок. Так, у покрытосеменных пыльцевое зерно, попав на рыльце пестика, прорастает. В ткани рыльца пестика внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее перетекают ядро вегетативной клетки и оба спермин. Проникнув в зародышевый мешок, пыльцевая трубка разрывается под действием разницы осмотического давления. Один из слермйев сливается с яйцеклеткой и образуется диплоидная зигота, дающая начало зародышу. Второй спермий сливается с центральной двуядерной клеткой, при этом образуется триллоидное ядро, дающее начало эндосперму (питательной ткани для зародыша) Весь этот процесс получил название двойного оплодотворения. Прочие клетки зародышевого мешка разрушаются. Зародыш (зачаточный побег) вместе с эндоспермом образуют семя, покрытое кожурой. Из стенок завязи или цветоложа формируется плод.
18. Это мельчайшие организмы, обладающие клеточным строением, не имеющие настоящего оформленного ядра. Бактерии освоили самые разнообразные среды обитания: почву, воду, воздух, внутреннюю среду организмов. Их обнаруживают даже в горячих источниках, где они живут при температуре 60° С. Снаружи бактерии покрыты капсулой или клеточной стенкой из муреина.
Плазматическая мембрана бактерий по структуре и функциям не отличается от мембран эукариотических клеток. У некоторых бактерий плазматическая мембрана впячивается внутрь клетки и образует мезосомы. На поверхности мезосомы находятся ферменты, участвующие в процессе дыхания. Во время деления бактериальной клетки, мезосомы связываются с ДНК, что облегчает разделение двух дочерних молекул ДНК. Генетический материал бактерий содержится в одной кольцевой молекуле ДНК.
Форма бактерий является одним из важнейших систематических признаков. Шаровидные бактерии называются - кокками, палочковидные — бациллами, изогнутые - вибрионами, спиралевидные — спирохетами и спириллами.
Размножаются бактерии делением пополам. Перед делением происходит удвоение ДНК. У бактерий наблюдается и половое размножение, в виде генетической рекомбинации. При сближении бактерий часть ДНК клетки-донора переносится в клетку-реципиент и замещает фрагмент ее ДНК. Обмен наследственной информацией может происходить путем конъюгации (прямого контакта клеток), трансдукции (переноса ДНК вирусом-бактериофагом) и трансформации (поглощения фрагментов ДНК извне). Бактерии способны в неблагоприятных условиях образовывать споры, сохракящие способность к прорастанию.
Способы питания разных бактерий
Сапрофиты извлекают питательные в-ва из мертвой органики, разлагая их до неорганических веществ. Симбионты — клубеньковые бактерии способны фиксировать и использовать атмосферный азот для биосинтеза. Паразиты живут внутри других организмов, которые обеспечивают их питанием и убежищем (к ним относятся патогенные бактерии). Автотрофы или фототрофы - фотосинтезирующие сине-зеленые водоросли (цианобактерии) используют для биосинтеза энергию солнечного света. Хемотрофы (железобактерии, серобактерии) извлекают энергию для биосинтеза из реакций окисления.
19 – 20 Это низшие хлорофиллсодержащие растения, не расчлененные на стебель, корень и листья. Обитают преимущественно в пресных водоемах и морях.
Отдел зеленые водоросли
Зеленые водоросли делятся на одноклеточные и многоклеточные формы, содержат хлорофилл. У них встречаются все виды бесполого и полового размножения. Зеленые водоросли встречаются в соленых и пресных водоемах, в почве, на коре деревьев, на камнях и скалах. Этот отдел насчитывает до 20 тыс. видов и включает пять классов:
Класс вольвоксовые - наиболее примитивные одноклеточные водоросли со жгутиками. Некоторые их виды представляют собой колонию.
Класс протококковые - одноклеточные и многоклеточные бейжгутиковые формы.
Класс улотриксовые - имеют нитчатое или пластинчатое строение слоевища.
Класс жаровые — строением напоминают высшие растения - хвощи.
Класс сифоновые — внешне похожи на другие водоросли или на высшие растения, состоят из одной многоядерной клетки, достигая размеров до 1 м.
Одноклеточная зеленая пресноводная водоросль - хламидомонада. Имеет овальную или круглую форму тела, на вытянутом переднем конце два жгутика. Хроматофор чашевидный, с пиреноидом, содержащим зерна крахмала. В передней части клетки красный глазок - это светочувствительный орган. Ядро одно, с маленьким ядрышком. Две пульсирующие вакуоли смещены к переднему концу клетки. Хламидомонада питается автотрофно, но при отсутствии света может перейти на гетеротрофное питание, если в воде присутствуют органические вещества. Размножается бесполым и половым путем. При бесполом размножении содержимое клетки (спорофит) делится на 4 части и образуются 4 гаплоидных зооспоры. С наступлением холодов 2 зооспоры сливаются, образуя диплоидную зиготоспору. Весной она делится митозом, вновь образуя гаплоидные водоросли.
Спирогира - пресноводная зеленая многоклеточная нитчатая водоросль. Нити составлены одним рядом одноядерных цилиндрических клеток со спиралевидными хлоропластами и пиреноидами. Рост нити в длину происходит бесполо за счет поперечного деления клеток. Размножается частями нити или половым путем. Половой процесс называется конъюгацией.
Отдел бурые водоросли
Многоклеточные морские водоросли. Насчитывается ок. 1500 видов. Имеют желтовато-бурую окраску, обусловленную большим количеством желтых и бурых пигментов. Размер и форма их различны. Встречаются нитевидные, корковидные, шаровидные, пластинчатые и кустообразные растения. Слоевища (тела) многих видов содержат газовые пузырьки, удерживающие водоросли в вертикальном положении. Вегетативное тело расчленено на подошву или ризоиды, служащие органами прикрепления, и на простую или рассеченную пластину, соединяющуюся с подошвой черешком. Пигменты, придающие им бурый цвет, сосредоточены только в поверхностных слоях клеток, внутренние клетки талома бесцветны. Это свидетельствует о дифференциации клеток по функциям: фотосимтетической и загасающей. У бурых водорослей нет настоящей проводящей системы, однако, в центре слоевища имеются ткани, по которым передвигаются продукты ассимиляции. Всасывание минеральных веществ осуществляется всей поверхностью слоевища.
У бурых водорослейьвстречаются все формы размножения: вегетативное (при случайных отделениях частей слоевища), споровое, половое (три формы: изогамная, гетерогамная и моногамная).
Отдел красные водоросли (багрянки)
Встречаются обычно на больших глубинах теплых морей. Насчитывают ок. 4000 видов. Имеют расчлененное слоевище, ризоидом или подошвой крепятся к субстрату. Помимо обычных хлорофиллов и каратиноидов, в пластидах багрянок содержатся фикобилины. Другая их особенность - сложный половой процесс. Гаметы и споры красных водорослей лишены жгутиков и неподвижны. Оплодотворение происходит при пассивном переносе мужских половых клеток к женскому половому органу:
Значение водорослей
Водоросли - первичные продуценты с высокой продуктивностью. С них начинаются большинство пищевых цепей морей, океанов и пресных водоемов Одноклеточные водоросли являются главным компонентом фитопланктона, который служит кормом многим видам водных животных. Водоросли обогащают атмосферу кислородом.
Из водорослей получают много ценных продуктов. Например, из красных водорослей получают полисахариды агар-агар и карраген (используются для получения желе, в косметике и как пищевые добавки); из бурых водорослей получают альгиновые кислоты (применяют в качестве отвердителей, желеобразующих веществ в пищевой, косметической промышленности, для изготовления красок и паков).
21.
Царство организмов, сочетающее признаки растений и животных. С животными их сближает гетеротрофный способ питания, наличие хитина в составе клеточной стенки, образование мочевины в процессе обмена веществ, гликогена в качестве запасного питательного вещества. Общие свойства с растениями заключаются а адсорбтивном (путем всасывания) питании и неограниченном росте.
Строение грибов
Тело грибов состоит из тонких ветвящихся трубчатых нитей - гиф. Вся совокупность гиф называете» мицелием. Каждая гифа окружена тонкой жесткой стенкой, содержащей хитин (азотсодержащий полисахарид).
В некоторых случаях клв»очная стенка содержит целлюлозу. Гифы не имеют клеточного строения, и их протоплазма либо совсем не разделена, либо разделяется поперечными перегородками, которые называются ceптами.
Питание грибов
Грибы гетеротрофны, т.к. для питания им нужны готовые органические вещества. Кроме этого, грибам необходим источник органического азота, минеральные соли и факторы роста (витамины). Грибы поглощают питательные вещества, всасывая их всей поверхностью путем диффузии. Пищеварение у грибов внешнее, осуществляемое внеклеточными ферментами.
По типу питания грибы бывают салрофитами, паразитами и симбионтами.
Трутовики
К этой группе относятся грибы, которые поселяются главным образом на древесине (стволы деревьев, пни, валежник). Плодовые тела различной формы: копытовидные, уплощенные в виде толстых лепешек, реже шляпочные. Прикрепляются к дереву одним боком (без ножки) или короткой боковой ножкой. Низ шляпки трубчатый. Трутовики не содержат ядовитых веществ, но большинство из них имеет кожистые, пробковые или деревянистые плодовые тела и поэтому в пищу не используются. Однако у некоторых из них в молодом возрасте плодовые тела мясистые, мягкие, без неприятного запаха. Такие виды считаются съедобными. Указываем несколько видов.
Трутовик серно-желтый
Плодовое тело плоское, крупное, до 20 сантиметров в диаметре, в очертании округлое или веерообразное, суженное к основанию, иногда с короткой ножкой. Верхняя сторона его волнистая, желтая или оранжево-розовая, нижняя - желтая, мелкопористая. Мякоть у молодых грибов желтоватая, мясистая, сочная; у старых - жесткая, сухая, белая. Появляется в июне на лиственных, реже хвойных породах деревьев. Растет обычно по несколько штук, друг над другом. Встречается в южных районах республики. Съедобен в раннем возрасте, затем становится горьким и твердым. Доступные цены - MacBook Air 11 MC969 - онлайн консультации.
Трутовик чешуйчатый
Отличается тем, что на верхней желтовато-серой поверхности шляпки располагаются кругами крупные буроватые чешуйки. Нижняя сторона шляпки беловатая. Ножка (если она есть) толстая, короткая, черная. Растет на лиственных деревьях в июне-июле, но не образует таких скоплений, как предыдущий вид, а чаще встречается одиночно. В Удмуртии он часто поселяется на вязах, поэтому в некоторых районах его называют вязовиком. Съедобен в раннем возрасте, а затем становится горьким и резинистым. Употребляется в любом виде. ткань в розницу | складское оборудование стеллажи
Овечий трутовик
Этот гриб очень мало похож на трутовики. Растет на почве, имеет вид обычного гриба с ножкой и шляпкой. Шляпка мясистая, 5 - 10 сантиметров в диаметре, выпуклая, округлая, белая, с желтоватым или зеленоватым оттенком, сверху часто с мелкими, трещинками. Низ шляпки белый или желтоватый, мелкопористый. Мякоть белая, затем желтоватая, со слабым приятным запахом. Ножка короткая, довольно толстая, гладкая, белая. Обитает в хвойных лесах. Съедобен. Используют в свежем и маринованном видах.
Трутовик березовый
Плодовое тело выпуклое, 3 - 15 сантиметров в диаметре и 2 - 6 сантиметров толщиной Верхняя поверхность у молодых грибов белая, затем серая и бурая. Нижняя - с округлыми, толстостенными порами, белая. Встречается на отмерших, реже живых березах. В некоторых литературных источниках указывается съедобным в молодом возрасте. Авторы пробовали отваривать молодое тело, но вкус его оказался горьким.
Трутовик изменчивый
Плодовое тело в виде шляпки и ножки. Шляпка округлая или воронковидно-вогнутая, 1 - 7 сантиметров в диаметре, 0,5 - 1 сантиметров толщиной Сверху желтовато-буроватого или табачного цвета, часто с радиальной штриховкой. Нижняя поверхность беловатая, пористая, низбегает на ножку. Ножка короткая, черная. Растет на мертвых деревьях лиственных пород. Несъедобен.
Чага
Это наросты на живых стволах березы, реже ольхи и рябины. Наросты имеют неправильную, желвакообразную форму, с неровной, часто растресканной поверхностью, черного или темно-бурого цвета и очень плотной, деревянистой консистенцией. На разрезе ткань бурая, с беловатыми прожилками. Чага представляет собой бесплодную форму трутовика скошенного. Настой чаги используется при заболевании желудка, кишечника, печени.
Печеночница
Плодовое тело плоское, в виде вытянутой вишнево-красного цвета лепешки с сочной кисловатой мякотью. Растет на стволах широколиственных пород, чаще на дубе. В Удмуртии может встретиться в южных районах. Съедобен, в соленом виде имеет пикантный вкус.
22. Высшие растения, или Наземные растения, или Эмбриофиты (лат. Streptophyta, включают группу без ранга лат. Embryophyta) — тип зелёных растений, которым свойственна дифференциация тканей, в отличие от низших растений — водорослей. К высшим растениям относятся мхи и сосудистые растения (папоротникообразные, псилотовые, хвощевидные, плауновидные, голосеменные и покрытосеменные).
Высшие растения в некоторых системах классификации рассматривают как таксон ранга подцарство.
Эволюция высших растений тесно связана с выходом на сушу и завоеванием наземных ниш.
Развитие специализированных тканей было важным условием для выхода растений на сушу. Для комфортного существования в воздушной среде растениям было необходимо развить как минимум эпидермис с устьицами для защиты от высыхания и теплообмена и проводящие ткани для обмена минеральных и органических веществ. Результатом выхода растений на сушу также стало разделение организма растения на корень, стебель и лист.
Большое разнообразие условий существования наземной жизни объясняет чрезвычайное богатство форм растений. Но несмотря на разнообразие внешнего вида, всем высшим растениям свойственен один тип полового процесса (оогамия) и два варианта одного типа смены ядерных фаз, или «смены поколений» (гетероморфные циклы развития с преобладанием либо спорофита, либо гаметофита). Во всех случаях оба «поколения» — гематофит и спорофит — различаются морфологически, цитологически и биологически. В эволюции почти всех отделов высших растений (за исключением мохообразных) в циклах развития преобладает спорофит.
Мхи
Основная статья: Мохообразные
Среди высших растений наиболее примитивным строением обладают Мохообразные (Bryophyta sensu lato) — у них отсутствует корень (есть ризоиды), а у маршанциевых, антоцеротовых и некоторых юнгерманниевых мхов отсутствует деление на лист и стебель — они являются слоевищными, как водоросли или лишайники. Устичный аппарат крайне примитивен, проводящая система не развита, проводящие функции выполняет паренхима.
Сосудистые споровые
Основная статья: Сосудистые споровые
См. также: Высшие споровые растения
Так называемые Сосудистые споровые, к которым относятся папоротники, хвощи, плауны и псилотовые, имеют уже довольно развитую проводящую систему, всегда выражены стебель, лист и корень. Однако они все ещё сильно связаны с водной средой, так как имеют свободноживущий гаметофит и половое размножение у них происходит с участием жгутиконосных сперматозоидов, которые не могут существовать вне водной среды.
Если Мохообразные и Сосудистые споровые рассматривают как единую группу, к ней иногда применяют собирательный термин «высшие споровые растения»[2].
Семенные растения
Основная статья: Семенные растения
Важным эволюционным прорывом растений на пути завоевания суши стало появление семени и оболочки пыльцевого зерна. Благодаря тому, что отныне гаметофит (теперь состоящий всего из нескольких клеток) стал полностью помещаться внутри влагоудерживающей оболочки, растения смогли освоить пустынные и холодные области.
У некоторых голосеменных и практически у всех цветковых растений в проводящих структурах появляются сосуды и ситовидные трубки — полые проводящие элементы, состоящие из стенок отмерших клеток, благодаря чему их проводящие системы действуют чрезвычайно эффективно.
Гнетум, голосеменное растение, имеющее сосуды в проводящей системе
Троходендрон, цветковое растение, первично не имеющее сосудов
Зостера, одно из немногих высших растений, сумевших вернуться в море
23. Это наиболее примитивные из групп наземных растений. Они мало приспособлены к жизни на суше, поэтому привязаны к влажным, затененным местам. У мхов нет настоящей сосудистой ткани (ксилемы и флоэмы), нет настоящих корней (вместо них нитчатые выросты стебля - ризоиды). Вода и минеральные соли поглощаются всей поверхностью тела, в том числе и ризоидами.
Жизненный цикл мхов включает гаплоидный гаметофит и диплоидный спорофит. Доминирующим поколением является гаплоидный гаметофит, который принимает на себя функции фотосинтеза, водоснабжения и минерального питания. Для обеспечения полового процесса необходима капельножидкая среда. Половое и бесполое поколение мхов не разделены, а представляет одно растение. Гаметофит развивается из гаплоидной споры. У разных видов мхов гаметофит может быть однополым (двудомным) и разнополым (однодомным). Органы полового размножения (гаметангии) образуют подвижные сперматозоиды и неподвижные яйцеклетки. Оплодотворение яйцеклетки происходит внутри женского полового органа. Из зиготы медленно развивается диплоидный спорофит, который представляет собой коробочку (спорангий), находящуюся на гаметофите и получающую от него питание. В коробочке путем мейоза образуются гаплоидные споры.
Наиболее известными представителями мхов являются кукушкцнлен и сфагнум. Стебли сфагнума имеют,светло-зеленый цвет и несут на себе мутовки ветвей, листья которых не имеют жилкования. У взрослых растений сфагнума нет ризоидов, и на болотах они образуют плотные подушки из прямостоячих ветвей. Листья (филлоиды) наряду с хлорофиллосодержащими клетками имеют мертвые клетки с утолщенными стенками, впитывающие воду. Сфагновые мхи - торфообразователи. Торф образуется в результате накопления и уплотнения отмерших нижних частей гаметофита. Их разложение не происходит из-за низкой кислотности и недостатка кислорода. Торф широко используется как топливо, удобрение и сырье в промышленности. Сфагнум обладает бактерицидными свойствами, и его используют в медицине.
24.В моховом покрове тех участков леса, где накапливается и застаивается вода, поселяется мох кукушкин лен 171. Покрывая почву сплошным ковром, он вытесняет другие зеленые мхи. Кукушкин лен способен впитать воды в 4 раза больше собственного веса. Плотный покров кукушкина льна задерживает атмосферную влагу. Это может вызвать заболачивание леса. Кукушкин лен — многолетнее растения. Его коричневато-зеленые стебли иногда достигают в высоту 30 см. Они густо покрыты узкими зелеными листьями. Корней у кукушкина льна, как и у остальных мхов, нет. На нижних частях стеблей имеются нитевидные выросты покровной ткани — ризоиды.
Питаются зеленые мхи так же, как другие зеленые растения. Из почвы ризоиды всасывают воду и минеральные вещества. Листья мхов, в клетках которых содержится хлорофилл, поглощают углекислый газ. В хлоропластах происходит фотосинтез.