
- •3)Понятие структурного анализа
- •4)Моделирование потоков данных. Построение иерархии диаграмм потоков данных
- •5)Методология функционального моделирования sadt
- •6)Состав функциональной модели sadt. Иерархия диаграмм в методологии sadt
- •7)Диаграммы «сущность-связь»
- •8)Сущности, отношения и связи в нотации Чена
- •9)Типы связей в нотации Чена
- •10)Диаграммы атрибутов в классической модели Чена
- •11)Диаграммы категоризации в модели Чена
- •12)Модель «сущность-связь» в нотации Баркера
- •13)Методика построения информационной модели системы.
- •14)Распределенные и централизованные базы данных. Архитектура файл-сервер. Архитектура клиент-сервер.
- •15)Иерархическая и сетевая модели данных.
- •16)Реляционная модель данных. История развития. Основные понятия (тип данных, домен, отношение, кортеж, атрибут, ключ).
- •17)Реляционная база данных.
- •18)Функции системы управления базами данных (субд): управления данными во внешней памяти, управление буферами оперативной памяти, управление транзакциями.
- •19)Функции системы управления базами данных: журнализация, поддержка языков баз данных.
- •20)Типовая организация современной субд.
- •21)Базовые средства манипулирования реляционными данными.
- •22)Реляционная алгебра. Общая интерпретация реляционных операций.
- •23)Особенности теоретико-множественных операций реляционной алгебры.
- •24)Реляционное исчисление.
- •25)Целостность сущностей и ссылок.
- •26)Субд в архитектуре клиент-сервер. Открытые системы.
- •27)Системная архитектура клиент-сервер. Удаленный вызов процедур.
- •28)Сервера баз данных.
- •29)Типичное распределение функций между клиентом и сервером. Распределенные базы данных.
- •30)Разновидности распределенных систем.
- •31)Распределенная компиляция запросов.
- •32)Язык реляционных баз данных Transact-sql (t-sql). История развития. Идентификаторы в t-sql.
- •33)Язык t-sql. Выражения.
- •34)Язык t-sql. Числовые и денежные типы данных. Типы данных для хранения информации о времени.
- •49) Создание, изменение и удаление представлений средствами t-sql.
- •35)Язык t-sql. Символьные и текстовые типы данных.
- •36)Язык t-sql. Специальные типы данных. Конвертирование типов данных.
- •37)Управляющие конструкции t-sql.
- •38)Процесс проектирования таблиц в реляционной базе данных. Определение идентификационной колонки.
- •39)Создание таблиц средствами t-sql.
- •40)Изменение структуры таблицы средствами t-sql. Удаление таблиц.
- •41)Добавление данных в таблицу средствами t-sql. Использование insert и select…into.
- •42)Извлечение данных средствами t-sql. Команда select. Разделы select и into.
- •Раздел into предназначен для сохранения результата, выполнения запроса в заданной таблице.
- •44)Извлечение данных средствами t-sql. Команда select. Разделы where, group by, having, order by.
- •43)Извлечение данных средствами t-sql. Команда select. Раздел from.
- •45)Изменение данных в таблице средствами t-sql. Команда update.
- •46)Удаление данных средствами t-sql. Команда delete.
- •47)Хранимые процедуры. Этапы создания.
- •48)Создание, модификация и удаление хранимых процедур средствами t-sql.
29)Типичное распределение функций между клиентом и сервером. Распределенные базы данных.
Типичным на сегодняшний день является такое распределение функций между клиентами и сервером при котором на стороне клиента работает только такое программное обеспечение, которое не имеет непосредственного доступа к базе данных, обращается для этого к серверу с использованием языка SQL. Если разделение функций между клиентской и серверной частями достаточно жесткое, как в большинстве современных СУБД, то пользователям на рабочей станции все равно какая аппаратура и операционная система работает на стороне сервера при условии, что он справляется с возникающим потоком запросов. Если могут возникнуть потребности перераспределения функций между клиентами и серверами, то программное обеспечение сервера должно это позволять.
Распределенные базы данных.
Основной задачей системы управления распределенной базы данных является интеграция локальных баз данных располагающихся в разных узлах сети для того, чтобы пользователи работающие в любом узле сети имели доступ ко всем базам данных, как к единственной базе данных.
Основная цель проекта – создание распределенной системы управления базами данных может быть сформулирована следующим образом: необходимо обеспечить средство интеграции локальных баз данных располагающихся в узлах вычислительной сети так, чтобы пользователь работающий в любом узле сети, имел доступ ко всем этим базам данных так, как если бы они были централизованными и при этом должны обеспечиваться:
1. Легкость использования системы.
2. Возможность автономного функционирования при нарушении связности сети.
3. Высокая степень эффективности работы системы.
30)Разновидности распределенных систем.
Существуют однородные и неоднородные БД. В однородной БД каждая локальная БД управляется одной и той же СУБД. В неоднородной системе локальные БД могут относиться даже к разным моделям данных.
Наиболее успешно в настоящее время решается задача интеграции неоднородных SQL ориентированных систем. Этому способствует стандартизация языка SQL и общее следование.
Основная цель проекта создания распределенной системы управления базами: необходимо обеспечить средства интеграции локальных баз данных, располагающихся в узлах вычислительной сети, с тем, чтобы пользователь, работающий в любом узле сети, имел доступ ко всем этим базам данных, так, как если бы они были централизованными, при этом должны обеспечиваться:
1. легкость использования системы;
2. возможность автономного функционирования при нарушении связности сети;
3. высокая степень эффективности.
Легкость использования системы достигается за счет того, что пользователи остаются в среде языка SQL. Возможность использования SQL обеспечивает прозрачность местоположения данных. Система автоматически обнаруживает текущее местоположение упоминаемых в пользовательском запросе объектов данных. Одна и та же прикладная программа, включающая приложение SQL, может быть выполнена в разных узлах сети. При этом в каждом узле сети на этапе компиляции запроса выбирается наиболее оптимальный план выполнения запросов в соответствии с расположением данных в распределенной системе.
Обеспечение автономности узлов сети может быть обеспечено следующим образом: каждая локальная БД администрируется независимо от других, возможно автономное подключение новых пользователей, смена версии автономной части системы и т.д.
Работа с доступными базами данных может продолжаться при выходе из строя отдельных узлов сети и линий связи. Для достижения высокой степени эффективности системы используется два основных приема. Во-первых, выполнению запроса предшествует его компиляция. В ходе этого процесса производится поиск употребляемых в запросе имен объектов баз данных в распределенном каталоге и замена имен на внутренние идентификаторы; проверка прав доступа пользователя, от которого производится компиляция, на выполнение соответствующей операции над базами данных и выбор наиболее оптимального глобального плана выполнения запроса, который затем подвергается декомпозиции и про частям рассылается в соответствующие узлы сети, где производится выбор оптимальных локальных планов выполнения компонентов запроса и производится генерация модулей доступа в машинных кодах. Обработанная таким образом прикладная программа, включающая предложения SQL, может в дальнейшем выполняться много раз без дополнительных накладных расходов.
Во-вторых, средством повышения эффективности системы является возможность перемещения удаленных отношений в локальные базы данных.