
- •2Вопрос
- •3. Цели и задачи метрологического обслуживания.
- •4. Силы и средства метрологического обслуживания.
- •6. Требования, предъявляемые к военной измерительной технике
- •7)Назначение, структурные схемы, достоинства и недостатки аналоговых и цифровых средств измерений.
- •8)Назначение, виды и основные характеристики измерительных преобразователей.
- •10. Виды интерфейсов, используемых в измерительных системах
- •11. Общие сведения о массе. Классификация приборов и средств для измерения и дозирования массы.
- •1.1. Связь массы и веса тела
- •2. Классификация приборов и средств для измерения и дозирования массы
- •2.1. Гири
- •Гири общего назначения
- •Гири специального назначения
- •13. Общие сведения о давлении. Классификация методов и средств измерений давления.
- •14. Сущность методов измерений давления.
- •15. Назначение и основные технические характеристики деформационных манометров. Классификация чувствительных элементов.
- •16. Устройство и принцип действия деформационных манометров. Установка и обслуживание манометров.
- •17. Общие сведения о графическом способе градуировки средств измерений.
- •19. Структура, этапы и сущность измерений.
- •20. Сущность прямых, косвенных, совместных и совокупных измерений.
- •21. Общие сведения о методе непосредственной оценки и методе сравнения с мерой.
- •22. Классификация средств измерений.
- •23. Методика выбора средств измерений для измерений параметров ввт.
- •24. Методика выбора средств измерений для контроля параметров ввт.
- •25. Общие сведения о мерах электродвижущей силы.
- •26. Общие сведения о мерах сопротивления.
- •27. Общие сведения о мерах ёмкости и индуктивности.
- •28. Классификация электроизмерительных приборов.
- •29. Основные узлы и принцип работы электроизмерительных механизмов.
- •30. Общие сведения о магнитоэлектрических механизмах.
- •3 1. Общие сведения об электродинамических механизмах.
- •32. Общие сведения об электростатических механизмах.
- •33. Общие сведения о приборах сравнения.
- •34. Общие сведения о приборах сравнения. Принцип действия измерительных механизмов(мостов??).
- •35. Стабилизированные и нестабилизированные источники токов и напряжений.
- •36. Калибраторы токов и напряжений.
- •37. Принцип действия вольтметров с времяимпульсным преобразованием.
- •38. Принцип действия вольтметров с частотоимпульсным и кодоимпульсным преобразованием.
- •39. Особенности измерений напряжения высокой частоты
- •40. Назначение и классификация измерительных генераторов.
- •41. Функциональные элементы измерительных генераторов.
- •42. Особенности задающих генераторов
- •48. Сущность конденсаторного и гетеродинного методов измерений частоты.
- •Принцип действия конденсаторного частотомера
- •49. Общие сведения об измерении фазового сдвига. Классификация методов и средств измерений фазового сдвига.
- •50. Сущность метода измерений фазового сдвига путём преобразования фазового сдвига во временной интервал.
- •Временной сдвиг между импульсами
- •52. Общие сведения о мощности. Классификация методов и средств измерений мощности.
- •3. Сравнение мощности исследуемого источника с мощностью постоянного тока или низкочастотного переменного тока.
- •53. Сущность термоэлектрического и терморезисторного методов измерения мощностей.
- •54. Сущность калориметрического метода измерения мощности.
- •55. Общие сведения об измерении временных интервалов. Классификация методов и средств измерений временных интервалов.
- •56. Сущность осциллографических методов измерений временных интервалов.
- •57. Классификация и основные характеристики электронных осциллографов. Обобщенная схема электронно-лучевого осциллографа.
- •58. Работа каналов вертикального отклонения, горизонтального отклонения, канала модуляции по яркости и встроенных калибраторов.
- •59. Общие сведения об измерении параметров модулированных колебаний. Основные понятия и определения.
- •1. Виды аналоговой модуляции:
- •2.Виды цифровой модуляции:
- •60. Методы измерений параметров амплитудно-модулированных сигналов. Измерение коэффициента амплитудной модуляции.
- •61. Методы измерений параметров частотно-модулированных сигналов. Измерение девиации частоты.
- •62. Математическое представление спектра сигналов. Спектры простых и сложных сигналов. Классификация анализаторов спектра.
- •63. Анализ спектра методом фильтрации.
- •64. Анализ спектра дисперсионным методом.
53. Сущность термоэлектрического и терморезисторного методов измерения мощностей.
Термоэлектрический метод реализуется с помощью полупроводниковых термоэлементов и термопар.
Полупроводниковый термоэлемент (рис. а) помещают в отверстие, выполняемое в широкой стенке волновода, на расстоянии а/4 от продольной оси (а — размер широкой стенки).
В результате нагрева внутреннего торца термоэлемента между торцами образуется разность температур, вследствие чего возникает термо-э.д. с. Последняя является линейной функцией проходящей мощности и не зависит от абсолютного значения температуры окружающей среды. Описанные термоэлементы имеют высокую чувствительность (сотни мкВ/град).
Достоинствами полупроводниковых ваттметров являются:
высокая электрическая прочность;
малый собственный КСВ;
виброустойчивость;
независимость показаний от климатических условий;
отсутствие источников питания;
большой срок службы.
Эти приборы позволяют вести непрерывный контроль мощности и могут служить датчиками в устройствах автоматического контроля.
Основной недостаток — инерционность: отсчет можно производить через 30 секунд после подачи колебаний в тракт.
Принцип действия ваттметров с термопарами заключается в измерении разности температур поверхности передающего тракта между участками с большим и малым сопротивлениями токам СВЧ. Участки с большим сопротивлением находятся на поверхностном поглощающем слое термопарных элементов (датчиков).
54. Сущность калориметрического метода измерения мощности.
Для измерения средних и больших уровней мощностей (от 1Вт до 10 кВт)
ЧЭ является нагрузка – калориметр
Могут быть:
сосудом Дьюара (для жидкостей)
сухим (для твердых поглотителейй)
также бывают:
статические
проточные
Рабочее тело – жидкость, твердый объемный или пленочный поглотитель.
P=cqρ∆T, где q – скоростной напор (для проточного калориметра)
Сухие изготавливаются в виде коаксиальных или волноводных согласованных нагрузок.
Достоинства: большой динамический диапазон
Недостатки:
-обладает низкой точностью
-низкая чувствительность
-малое быстродействие
Калориметрический метод. Этот метод относится к наиболее точным измерениям высокочастотной мощности больших и средних значений практически на любой частоте. Он основан на преобразовании электромагнитной энергии в тепловую. Калориметрический ваттметр состоит из приемного преобразователя, в котором расположена нагрузка, поглощающая электромагнитную энергию. При этом выделяется теплота, нагревающая некоторое рабочее тело. С помощью измерительного узла измеряется температура рабочего тела, и по ее значению определяется значение мощности. Ваттметры выполняются с твердым или, чаще, с жидким рабочим телом, работают в адиабатном режиме (без теплоотдачи во внешнюю среду) или при постоянной температуре рабочего тела.
Наибольшее распространение получили проточные (поточные) калориметрические ваттметры с непрерывно циркулирующей жидкостью — водой или кремнийорганической смесью (рис. 11.8), Здесь значение мощности функционально связано с разностью температур жидкости на входе и выходе преобразователя, Т1 и Т2 соответственно.