Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 1 (учебное пособие).doc
Скачиваний:
13
Добавлен:
01.03.2025
Размер:
4.55 Mб
Скачать

Глава I. Балансовые модели балансовые модели. Модель Леонтьева многоотраслевой экономики. Продуктивные модели

В экономике существует баланс между отдельными отраслями. Рассмотрим простой вариант модели межотраслевого баланса – модель «затраты-выпуск».

Пусть имеется n различных отраслей, каждая из которых производит свой продукт и нуждается в продукции других отраслей (производственное потребление). Введем следующие обозначения:

‑ общий объем продукции отрасли i за плановый год ‑ так называемый валовой выпуск отрасли i;

‑ объем продукции отрасли i, расходуемый отраслью j в процессе производства;

‑ объем продукции отрасли i, предназначенный к потреблению в непроизводственной сфере ‑ объем конечного потребления. В него входят создаваемые в хозяйстве запасы, личное потребление граждан, обеспечение общественных потребностей (просвещение, наука, здравоохранение, развитие инфраструктуры и т. д.), поставки на экспорт.

Указанные величины сведем в таблицу 1.1.

Таблица 1.1

Производственное

потребление

Конечное

потребление

Валовой

выпуск

Балансовый характер этой таблицы выражается в том, что при любом выполняется соотношение

, (1.1)

означающее, что валовой выпуск расходуется на производственное потребление, равное , и непроизводственное потребление, равное . Соотношения (1.1) называют соотношениями баланса.

Единицы измерения всех указанных величин могут быть или натуральными (кубометры, тонны, штуки и т. п.), или стоимостными. В зависимости от этого различают натуральный и стоимостной межотраслевой балансы. В дальнейшем будем иметь в виду стоимостной баланс.

В. Леонтьев обратил внимание на важное обстоятельство: величины остаются постоянными в течение ряда лет, что объясняется примерным постоянством используемой технологии производства.

Сделаем следующее допущение: для выпуска любого объема продукции отрасли j необходимо затратить продукцию отрасли i в количестве , т. е. материальные издержки пропорциональны объему производимой продукции:

. (1.2)

Коэффициенты называют коэффициентами прямых материальных затрат или коэффициентами материалоемкости. Они показывают сколько необходимо единиц продукции отрасли i для производства единицы продукции отрасли j, если учитывать только прямые затраты.

Подставив (1.2) в балансовое соотношения (1.1), получим

или, в матричной записи,

, (1.3)

где

Вектор называется вектором валового выпуска, вектор вектором конечного потребления, а матрица А ‑ матрицей прямых затрат. Соотношение (1.3) называется уравнением линейного межотраслевого баланса. Вместе с изложенной интерпретацией матрицы А и векторов и это соотношение называют также моделью Леонтьева.

Уравнения межотраслевого баланса можно использовать для плановых расчетов:

    • задавая для каждой отрасли i валовой выпуск продукции можно определить объемы конечного потребления каждой отрасли :

,

где Е – единичная матрица;

    • задавая величины конечного потребления каждой отрасли можно определить величины валового выпуска продукции :

,

где – матрица, обратная к матрице , ее элементы называют коэффициентами полных материальных затрат.

Отметим особенности системы (1.3): все компоненты матрицы А, а также векторов и неотрицательны (это вытекает из экономического смысла А, и ). Для краткости будем записывать это так: .

Таким образом, плановые расчеты по модели Леонтьева можно выполнять при соблюдении следующего условия продуктивности:

матрица называется продуктивной, если для любого вектора существует решение уравнения (1.3).

В этом случае и модель Леонтьева, определяемая матрицей А, тоже называется продуктивной.

Сформулируем критерии продуктивности матрицы .

Критерий I. Матрица продуктивна тогда и только тогда, когда матрица существует и неотрицательна.

Критерий II. Матрица продуктивна тогда и только тогда, когда имеет место разложение матрицы в матричный ряд

. (1.4)

В соотношении (1.4) матрицы называются матрицами коэффициентов косвенных затрат 2-го, 3-го и т. д. порядков. Их сумма образует матрицу коэффициентов косвенных затрат

. (1.5)

Суть косвенных затрат поясним на примере производства двигателей. На их изготовление в виде прямых затрат расходуется сталь, чугун и т. д. Но для производства стали также нужен чугун. Следовательно, производство двигателей включает как прямые, так и косвенные затраты чугуна.

Таким образом, из соотношений (1.4) и (1.5) имеем

, (1.6)

т. е. матрица коэффициентов полных материальных затрат включает в себя матрицы коэффициентов прямых и косвенных затрат.

Рассмотрим примеры.

Пример 1. Исследовать на продуктивность матрицу

Решение. Сначала найдем матрицу :

Затем найдем . С этой целью по известным из линейной алгебры правилам вычислим определитель

алгебраические дополнения для элементов матрицы

; ;

; ;

; ;

; ;

.

Тогда

.

Полученная матрица неотрицательна и по Критерию I исходная матрица А продуктивная.

Пример 2. Для матрицы А коэффициентов прямых затрат из примера 1 и вектора конечного потребления

найти: а) вектор валового выпуска; б) матрицу косвенных затрат; в) изменение вектора валового выпуска при увеличении вектора конечного потребления на величину

Решение.

а) Вектор валового выпуска вычислим по формуле

.

Имеем

б) Матрицу косвенных затрат В найдем из соотношения (1.6):

в) .

Таким образом, при увеличении вектора конечного потребления на вектор валового выпуска увеличится на .