Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 1 (учебное пособие).doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
4.55 Mб
Скачать

Методы решения матричных игр в смешанных стратегиях

В этой лекции рассматриваются матричные игры, не имеющие седловых точек.

игры

Рассмотрим игру с платежной матрицей

.

Пусть игрок A применяет набор своих оптимальных стратегий . По основной теореме теории игр это обеспечивает ему выигрыш при любых стратегиях игрока В, т. е. выполняются соотношения:

(12.1)

Дополняя их уравнением

(12.2)

получим систему линейных уравнений относительно и . Решая ее найдем

, , , (12.3)

где .

Повторяя те же рассуждения для игрока В, получим систему линейных уравнений

(12.4)

Ее решениями будут

, , , (12.5)

Пример. Молокозовод поставляет в магазин молочную продукцию ( ) и кисломолочную продукцию ( ). Согласно договора между ними продукция поступает в магазин два раза в день: с 10.00 до 11.00 (1-ый срок) и с 17.00 до 18.00 (2-ой срок). Если молокозавод соблюдает сроки поставок, то магазин выплачивает премии по следующей схеме: при поставке продукции в первый срок выплачивает 5 тыс. руб., во второй срок – 3 тыс. руб.; при поставке продукции в первый срок выплачивает 2 тыс. руб., во второй срок – 3 тыс. руб. Определить оптимальные стратегии поставок и получения продукции.

Решение. Примем молокозавод за игрока А, а магазин – за игрока В. Составим платежную матрицу игры:

Таблица 12.1

Сроки

Продукция

1-ый срок

2-ой срок

5

1

2

3

или

.

Найдем

,

,

, седловой точки нет. Применим формулы (12.3) – (12.5) для определения оптимальных стратегий и цены игры:

, , , ,

, ,

Оптимальные стратегии: , , цена игры .

Таким образом, молокозавод поставляет молочную продукцию с вероятностью , а кисломолочную продукцию – с вероятностью , а магазин получает продукцию в 1-ый срок с вероятностью , а во 2-ой срок – с вероятностью и выплачивает 2,6 тыс. руб. премии молокозаводу ежедневно.

Матричная игра допускает простую геометрическую интерпретацию.

По Теореме 2 из Лекции 11 нахождение цены игры и оптимальной стратегии для игрока А равносильно решению уравнения:

(12.6)

Для нахождения правой части (12.6) применим графический метод.

Пусть игрок А выбрал смешанную стратегию , , а игрок Вk-ую чистую стратегию, . Тогда средний выигрыш игрока А окажется равным

при стратегии (12.7)

при стратегии (12.8)

На плоскости pOz уравнения (12.7) и (12.8) описывают прямые I и II, изображенные на рис. 12.1

Рис. 12.1

Очевидно, , которую называют нижней огибающей прямых I и II.

Нетрудно видеть, что

(см. рис. 12.1)

Таким образом, верхняя точка нижней огибающей – определяет оптимальную стратегию игрока А: и цену игры .

Проиллюстрируем описанный графичексий метод на рассмотренной выше игре с платежной матрицей .

На плоскости pOz построим две прямые, описываемые уравнениями: и или (I) и (II).

Рис. 12.2

Решая систему уравнений

найдем , , .

Таким образом, имеем полученный выше ответ игры: и .

Теперь покажем как графическим методом найти стратегии игрока В.

Вновь по Теореме 2 из Лекции 11 имеем

(12.9)

Пусть игрок В выбрал смешанную стратегию , , а игрок Аi-ую чистую стратегию, . Тогда средний выигрыш игрока В окажется равным

при стратегии (12.10)

при стратегии (12.11)

На плоскости qOz уравнения (12.10) и (12.11) описывают прямые III и IV, изображенные на рис. 12.3

Рис. 12.3

Очевидно, , которую называют верхней огибающей прямых III и IV.

Нетрудно видеть, что

(см. рис. 12.3)

Таким образом, нижняя точка верхней огибающей – определяет оптимальную стратегию игрока В: и цену игры .

Для рассмотренной выше гры с матрицей H найдем стратегии игрока В.

На плоскости qOz построим две прямые, описываемые уравнениями: и или (III) и (IV).

Рис. 12.4

Решая систему уравнений

найдем , , .

Таким образом, имеем и .

Замечание. На практике оптимальную стратегию игрока В, если оптимальная стратегия игрока А, следовательно, и цена игры известны, находят приравниванием любого из двух средних выйгрышей игрока В к цене игры:

или .

Для рассмотренного примера такими уравнениями будут

или

Аналогично находят оптимальную стратегию игрока А, если известна оптимальная стратегия игрока В.

и – игры

Решают такие игры графическим способом, описанным выше. Отличие от – игр заключается в следующем.

  1. Нижняя (верхняя) огибающая семейства прямых

содержит большее число отрезков.

  1. Пусть в игре в верхней точке нижней огибающей пересекаются прямые и . Тогда при нахождении оптимальной смешанной стратегии игрока В согласно Теореме 2 полагают, что , , , , где q – решение уравнения

или .

  1. Пусть в игре в нижней точке верхней огибающей пересекаются прямые и . Тогда при нахождении оптимальной смешанной стратегии игрока А согласно Теореме 2 полагают, что , , , , где p – решение уравнения

или .

игры

При решении таких игр рекомендуется предварительно уменьшить размеры платежной матрицы или упростить ее в некотором смысле. С этой целью применяют следующие правила.

Правило доминировнаия.

Из платежной матрицы исключают чистые стратегии заведомо невыгодные по сравнению с другими:

а) для игрока А такими стратегиями являются те, которым соответствуют строки с элементами не большими по сравнению с элементами других строк;

б) для игрока В такими стратегиями являются те, которым соответствуют столбцы с элементами не меньшими по сравнению с элементами других столбцов.

Например, рассмотрим игру с матрицей

Сравнивая строки, убеждаемся, что элементы 2-ой строки не больше соответствующих элементов 1-ой строки, а 3-ья строка совпадает с 4-ой. Следовательно, стратегии и невыгодные и могут быть отброшены. Матрица игры преобразуется к матрице

.

Сравнивая столбцы полученной матрицы, убеждаемся, что элементы 2-го столбца не меньше соответствующих элементов 1-го столбца, а элементы 3-го столбца не меньше соответствующих элементов 4-го столбца, т. е. стратегии и также могут быть отброшены. Окончательно усеченная матрица игры имеет вид

.

Таким образом, оптимальными стратегиями игроков А и В игры с матрицей Н будут и , где и – оптимальные стратегии игры с матрицей .

Аффинное правило.

Пусть и – оптимальные смешанные стратегии игроков А и В в игре с платежной матрицей и ценой . Тогда и будут оптимальными стратегиями и в игре с матрицей и ценой .

Например, игру с матрицей можно заменить игрой с матрицей , т. к. элементы этих матриц связаны соотношениями : ; ; ; ; ; . При этом оптимальные стратегии игр совпадают, а цены игр связаны соотношением .

В общем случае решение игр размера в смешанных стратегиях сводят к решению двух возможно двойственных ЗЛП. Изучению этого вопроса посвящена следующая лекция.