
- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
8.3.2. Полиномиальная регрессия
Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов реализуется вычисленими по формуле:
|
На рис. 8.3.2. приведен пример полиномиальной регрессии с использованием полиномов 2, 3 и 8-й степени. Степень полинома обычно устанавливают не более 4-6 с последовательным повышением степени, контролируя среднеквадратическое отклонение функции аппроксимации от фактических данных. Нетрудно заметить, что по мере повышения степени полинома функция аппроксимации приближается к фактическим данным, а при степени полинома, равной количеству отсчетов данных минус 1, вообще превращается в функцию интерполяции данных, что не соответствует задачам регрессии.
|
Рис. 8.3.2. Одномерная полиномиальная регрессия. |
Зональная регрессия. При больших координатных интервалах с большим количеством отсчетов и сложной динамике изменения данных рекомендуется применять последовательную локальную регрессию отрезками полиномов малых степеней.
На рис. 8.3.3 приведен пример вычисления регрессии модельной кривой (отрезка синусоиды) в сумме с шумами. Параметр span определяет размер локальной области и подбирается с учетом характера данных и необходимой степени их сглаживания (чем больше span, тем больше степень сглаживания данных).
|
Рис. 8.3.3. Зональная регрессия полиномом второй степени. |
8.3.3. Нелинейная регрессия
Линейное
суммирование произвольных функций. В
программных пакетах для инженерных
вычислений, таких как MatLab, Mathcad и прочих
имеется возможность выполнения регрессии
с приближением к функции общего вида в
виде весовой суммы функций
.
При этом сами функции fn(x) могут
быть любого, в том числе нелинейного
типа. С одной стороны, это резко повышает
возможности аналитического отображения
функций регрессии. Но, с другой стороны,
это требует от пользователя определенных
навыков аппроксимации экспериментальных
данных комбинациями достаточно простых
функций.
Регрессия общего типа. Второй вид нелинейной регрессии реализуется путем подбора параметров к заданной функции аппроксимации с использованием функции, обеспечивающей минимальную среднеквадратическую погрешность приближения функции регрессии к входным данным (векторы Хи Y координат и отсчетов). Пример приведен на рис. 8.3.4, где G(x) – набор из трех экспонент.
|
Рис. 8.3.4 |
Типовые функции регрессии. Для простых типовых формул аппроксимации предусмотрен ряд функций регрессии, в которых параметры функций подбираются программой самостоятельно.
На рис. 8.3.5 приведен пример реализации синусоидальной регрессии модельного массива данных по базовой синусоиде f1(x) в сопоставлении с зональной регрессией полиномом второй степени f2(x).
Как можно видеть из сопоставления методов по среднеквадратическим приближения к базовой кривой и к исходным данным, известность функции математического ожидания для статистических данных с ее использованием в качестве базовой для функции регрессии дает возможность с более высокой точностью определять параметры регрессии в целом по всей совокупности данных, хотя при этом кривая регрессии не отражает локальных особенностей фактических отсчетов данной реализации. Это имеет место и для всех других методов с заданием функций регрессии.
|
Рис. 8.3.5 |
В начало пункта |
Оглавление |