- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
15.5. Сглаживание данных [25]
Сглаживание данных, как искаженных помехами, так и статистических по своей природе, можно считать частным случаем регрессии без определения символьной формы ее функции. В Mathcad для сглаживания применяются следующие функции:
supsmooth(X,Y) – возвращает вектор линейно сглаженных данных Y, метод наименьших квадратов по k отсчетам с адаптивным выбором значения k с учетом динамики изменения данных. Значения вектора Х должны идти в порядке возрастания.
ksmooth(X,Y,b) – вычисляет вектор сглаженных данных на основе распределения Гаусса. Параметр b задает ширину окна сглаживания и должен быть в несколько раз больше интервала между отсчетами по оси х.
medsmooth(Y,b) - вычисляет вектор сглаженных данных по методу скользящей медианы с шириной окна b, которое должно быть нечетным числом.
Рис. 15.5.1.
15.6. Предсказание зависимостей [25]
Рис.
15.6.1.
predict(Y,n,K),
где n – степень полинома аппроксимации вектора равномерно распределенных данных Y, позволяет вычислить вектор К точек предсказания (экстраполяции) поведения произвольного сигнала за пределами его задания (по возрастанию координат х). Предсказание тем точнее, чем более гладкую форму имеет заданный сигнал.
Пример использования функции приведен на рис. 15.6.1 для гладкой и статистически зашумленной сигнальной кривой. Степень аппроксимирующего полинома определяет глубину использования входных данных и может быть достаточно небольшой для гладких и монотонных сигналов. Ошибка прогнозирования увеличивается по мере удаления от заданных данных.
Регрессия степени ноль, один, три.
Df Линейная регрессия
С
амый
простой и наиболее часто используемый
вид регрессии – линейная. Приближение
данных (xi,yi)
осуществляется линейной функцией
y(x)=b+a×x. На координатной плоскости (x,y)
линейная функция, как известно,
представляется прямой линией (рис.
справа). Еще линейную регрессию часто
называют методом
наименьших квадратов,
поскольку коэффициенты a и b вычисляются
из условия минимизации суммы квадратов
ошибок |b+a×xi-yi|2.
Для
расчета линейной регрессии используются
следующие формулы
Замечание.
Чаще всего, такое же условие, т.е.
минимизация суммы квадратов ошибок в
узлах |b+axi-yi|2,
ставится и в других задачах регрессии,
т. е. приближения массива данных (xi,yi)
другими зависимостями y(x). Однако, имеются
и альтернативные алгоритмы, минимизирующие
сумму абсолютных значений медиан ошибок
в узлах (медиан-медианная
регрессия).Различие
результатов среднеквадратичной (сплошная
линия) и медиан-медианной (пунктир)
линейной регрессии иллюстрируется рис.
снизу.
http://www.edu.nstu.ru/courses/msos/08.html
