
- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
1.3.2. Авторегрессионные модели
Самая популярная модель данного класса - ARIMAX рассмотрена мною подробно в наборе записей по соответствующему тэгу ARIMAX.
В основу авторегрессионных моделей заложено предположение о том, что значение процесса Z(t) линейно зависит от некоторого количества предыдущих значений того же процесса Z(t-1),…,Z(t-p).
Авторегрессионная модель скользящего среднего. В области анализа временных рядов модель авторегрессии (autoregressive, AR) и модель скользящего среднего (moving average, MA) является одной из наиболее используемых [1],[5].
Согласно работе [1], модель авторегрессии является исключительно полезной для описания некоторых встречающихся на практике временных рядов. В этой модели текущее значение процесса выражается как конечная линейная совокупность предыдущих значений процесса и импульса, который называется «белым шумом»,
(1.10)
Формула (1.10) описывает процесс авторегреcсии порядка p, который в литературе часто обозначается AR(p), здесь C — вещественная константа, φ1,..,φp — коэффициенты, εt — ошибка модели. Для определения φi и C используют метод наименьших квадратов [19] или метод максимального правдоподобия [20].
Другой тип модели имеет большое значение в описании временных рядов и часто используется совместно с авторегрессией называется моделью скользящего среднего порядка q и описывается уравнением
(1.11)
В литературе процесс (1.11) часто обозначается MA(q); здесь q — порядок скользящего среднего, εt — ошибка прогнозирования. Модель скользящего среднего является по сути дела фильтром низких частот. Нужно отметить, что существуют простые, взвешенные, кумулятивные, экспоненциальные модели скользящего среднего.
Согласно работе [1], для достижения большей гибкости в подгонке модели часто целесообразно объединить в одной модели авторегрессию и скользящее среднее. Общая модель обозначается ARMA(p,q) соединяет в себе фильтр в виде скользящего среднего порядка q и авторегрессию фильтрованных значений процесса порядка p.
Если в качестве входных данных используются не сами значения временного ряда, а их разность d-того порядка (на практике d необходимо определять, однако в большинстве случаев d ≤ 2), то модель носит название авторгерессии проинтегрированного скользящего среднего. В литературе данную модель называют ARIMA(p,d,q) (autoregression integrated moving average).
Развитием модели ARIMA(p,d,q) является модель ARIMAX(p,d,q), которая описывается уравнением
(1.12)
Здесь α1,...,αS — коэффициенты внешних факторов X1(t),…,XS(t). В данной модели чаще всего процесс Z(t) является результатом модели MA(q), то есть отфильтрованными значениями исходного процесса. Далее для прогнозирования Z(t) используется модель авторегрессии, в которой введены дополнительные регрессоры внешних факторов X1(t),…,XS(t).
Авторегрессионная модель с условной гетероскедастичностью (autoregressive conditional heteroskedasticity, GARCH) была разработана в 1986 году Тимом Петером Борреслевом и является моделью остатков для модели AR(p) [22]. На первом этапе для исходного временного ряда определяется модель AR(p) (1.10). Далее предполагается, что ошибка модели (1.10) εt имеет две составляющие
(1.13)
где σt — зависимое от времени стандартное отклонение; ςt — случайная величина, имеющая нормальное распределение, среднее значение, равное 0, и стандартное отклонение, равное 1. При этом зависимое от времени стандартное отклонение описывается уравнением
(1.14)
Здесь β0,...,βq и γ0,..., γp — коэффициенты. Уравнение (1.14) называется моделью GARCH(p,q) и имеет два параметра: p характеризует порядок авторегрессии квадратов остатков; q — количество предшествующих оценок остатков.
Наиболее частое применение данная модель получила в финансовом секторе, где с помощью нее моделируется волатильность. На сегодняшний день существует ряд модификаций модели под названиями NGARCH, IGARCH, EGARCH, GARCH-M и другие [22].
Авторегрессионнная модель с распределенным лагом (autoregressive distributed lag models, ARDLM) недостаточно подробно описана в литературе. Основное внимание данной модели уделяется в книгах по эконометрике [23].
Часто при моделировании процессов на изучаемую переменную влияют не только текущие значения процесса, но и его лаги, то есть значения временного ряда, предшествующие изучаемому моменту времени. Модель авторегрессии распределенного лага описывается уравнением
(1.15)
Здесь φ0,..., φp — коэффициенты, l — величина лага. Модель (1.15) называется ARDLM(p,l) и чаще всего применяется для моделирования экономических процессов [23].