
- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
1.3. Обзор моделей прогнозирования
Перед тем как перейти к обзору моделей, необходимо отметить, что названия моделей и соответствующих методов как правило совпадают. Например, работы [1],[11], [12],[13] посвящены одной из самых распространенных моделей прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression moving average external, ARIMAX). Эту модель и соответствующий ей метод обычно называют ARIMAX. В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов.
Набор понятных для чтения материалов по вопросу классификации моделей и методов прогнозирования временных рядов можно найти по тегу Классификация моделей прогнозирования.
Согласно работе [14], в настоящее время насчитывается свыше 100 классов моделей прогнозирования. Число общих классов моделей, которые в тех или иных вариациях повторяются в других, гораздо меньше. Часть моделей и соответствующих методов относится к отдельным процедурам прогнозирования. Часть методов представляет набор отдельных приемов, отличающихся от базовых или друг от друга количеством частных приемов и последовательностью их применения.
В аналитическом обзоре [14] все методы прогнозирования делятся на две группы: интуитивные и формализованные.
Об этом я подробнее говорю в записи Классификация методов прогнозирования по Э. Тихонову.
Интуитивное прогнозирование применяется тогда, когда объект прогнозирования либо слишком прост, либо, напротив, настолько сложен, что аналитически учесть влияние внешних факторов невозможно. Интуитивные методы прогнозирования не предполагают разработку моделей прогнозирования и отражают индивидуальные суждения специалистов (экспертов) относительно перспектив развития процесса. Интуитивные методы основаны на мобилизации профессионального опыта и интуиции. Такие методы используются для анализа процессов, развитие которых либо полностью, либо частично не поддается математической формализации, то есть для которых трудно разработать адекватную модель. В статье [6] указано, что к таким методам относятся методы экспертных оценок, исторических аналогий, предвидения по образцу. Кроме того, в настоящее время широко распространено применение экспертных систем, в том числе с использованием нечеткой логики [15]. В статье [16] подробно описаны интуитивные методы прогнозирования.
Формализованные методы рассматривают модели прогнозирования. В обзоре [9] модели прогнозирования разделяются на статистические модели и структурные модели.
Об этом я подробнее говорю в другой записи Классификация моделей прогнозирования временных рядов по Jingfei Yang.
В статистических моделях функциональная зависимость между будущими и фактическими значениями временного ряда, а также внешними факторами задана аналитически. К статистическим моделям относятся следующие группы:
регрессионные модели;
авторегрессионные модели;
модели экспоненциального сглаживания.
В структурных моделях функциональная зависимость между будущими и фактическими значениями временного ряда, а также внешними факторами задана структурно. К структурным моделям относятся следующие группы:
нейросетевые модели;
модели на базе цепей Маркова;
модели на базе классификационно-регрессионных деревьев.
Кроме того, необходимо отметить, что для узкоспециализированных задач иногда применяются особые модели прогнозирования. Так, например, для задачи прогнозирования уровня сахара крови человека применяются модели на основе дифференциальных уравнений [8]. Для задачи прогнозирования транспортного потока, которая в последние несколько лет актуальна для мегаполисов, применяются гидродинамические модели [17]. Для прогнозирования природных явлений, таких как землетрясения, применяется, например, модель, в основу которой положены нелинейные клетки (или соты), находящиеся под воздействием внешнего поля, и у которых есть внутреннее состояние, изменяющееся во времени под воздействием этого поля [18]. Аналогичные модели разрабатываются и применяются для специальных процессов и систем. В рамках настоящей работы данный класс формализованных моделей не рассматривается.