
- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
Примечания
Достоинства:
Вейвлетные преобразования обладают всеми достоинствами преобразований Фурье.
Вейвлетные базисы могут быть хорошо локализованными как по частоте, так и по времени. При выделении в сигналах хорошо локализованных разномасштабных процессов можно рассматривать только те масштабные уровни разложения, которые представляют интерес.
Базисные вейвлеты могут реализоваться функциями различной гладкости.
Недостатки:
Можно выделить один недостаток, это относительная сложность преобразования.
Чирплет
Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сопоставление волна(wave)- вейвлет, ЛЧМ-сигнал(chirp)- чирплет
В обработке сигналов чирплет преобразование — это скалярное произведение входного сигнала с семейством элементарных математических функций, именуемых чирплетами.
Содержание
|
Аналогия с другими преобразованиями
Подобно вейвлетам (см. Непрерывное вейвлет-преобразование или Дискретное вейвлет-преобразование), чирплеты получаются из одного материнского чирплета (аналогично «материнскому» или «родительскому» вейвлету в теории вейвлетов).
Чирплеты и чирплет-преобразование
Термин «chirplet transform» был предложен Стивом Манном[1] — он служил заголовком первой опубликованной на эту тему статьи. Само по себе слово «чирплет» использовалось Стивом Манном, Доминго Миховиловичем и Рональдом Брейсвеллом для описания результата применения взвешивающего окна к ЛЧМ-сигналу (англ. chirp). По словам Манна:[2]
Вейвлет — это кусочек волны [wave], а чирплет — соответственно, кусочек ЛЧМ-сигнала [chirp]. Точнее, чирплет — результат умножения такого сигнала на окно, что обеспечивает свойство локализованности во времени. В условиях частотно-временного пространства мелкие ЛЧМ-импульсы существуют как вращающиеся, сдвинутые, деформированные структуры, движущиеся от традиционного параллелизма по временной и частотным осям, типичным для волн (Фурье и оконное преобразование Фурье или вейвлеты).
Таким образом, чирплет-преобразование является повернутым, взвешенным или иначе измененным мозаичным представлением частотно-временной плоскости. Хотя ЛЧМ-сигналы и их приложения известны давно, первая опубликованная работа о «чирплет-преобразовании»[3] описывала особое представление сигналов с помощью семейств функций, связанных друг с другом операторами частотного, временного сдвигов, масштабирования и проч. В этой статье в качестве примера было представлено чирплет-преобразование от Гауссиана, вместе с примером обнаружения льда с помощью радиолокатора (улучшение результатов распознавания цели при применении описанного подхода). Термин «чирплет» (но не «чирплет-преобразование»!) также применялся для схожего преобразования, описанного Миховиловичем и Брэйсвеллом позже в том же году.
Приложения
(a) В обработке изображений, период часто изменяется линейно. (b) На этом рисунке повторяющиеся структуры — темные области в окнах и светлые опоры — «сплющиваются» (возрастает частота) при сдвиге вправо. (c) Чирплет преобразование в данном случае более полезно, чем Фурье или вейвлет — преобразования.
Чирплет-преобразование широко применяется в:
радиолокации
медицине
анализ кардиограмм;
анализ ЭЭГ, например Cui, et al..
обработке сигналов
обработке изображений
SETI@home использует ЛЧМ-сигналы (chirp) для компенсации эффекта Допплера.
Chirplet Time Domain Reflectometry (from National Instruments website)