
- •Раздел I. Линейные системы. Цифровые фильтры
- •Системы хранения медиаданных
- •Скорости и интерфейсы
- •Расчет аналогового нормированного фильтра нижних частот Баттерворта
- •Df 1. Введение в адаптивные фильтры
- •1.1. Адаптивная обработка данных
- •1.1.1 Адаптивные фильтры
- •1.1.2 Принцип действия адаптивного фильтра
- •1.4 Адаптивные фильтры
- •1.4.1 Адаптивные фильтры с бесконечной импульсной характеристикой
- •1.4.2 Адаптивные фильтры с конечной импульсной характеристикой
- •1.4.3 Адаптивные фильтры, основанные на методах преобразования сигнала
- •3 Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой
- •3.1. Введение
- •4. Адаптивные алгоритмы для фильтров с бесконечной импульсной характеристикой
- •4.1. Введение
- •4.1.1 Общий обзор
- •2.3 Оптимальное рекурсивное калмановское оценивание
- •2.3.1 Скалярный фильтр Калмана
- •2.3.2. Вывод коэффициента фильтра Калмана
- •2.4. Векторный фильтр Калмана
- •2.4.1. Векторный фильтр Калмана в качестве устройства коррекции канала
- •Требования к вейвлетам
- •Свойства вейвлет преобразования
- •Непрерывное вейвлет-преобразование
- •Дискретное вейвлет-преобразование
- •Графическое представление
- •Применение
- •Примечания
- •Чирплет
- •Аналогия с другими преобразованиями
- •Чирплеты и чирплет-преобразование
- •Приложения
- •Систематика чирплет-преобразования
- •Df Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов
- •1.1. Содержательная постановка задачи
- •1.2. Формальная постановка задачи
- •1.3. Обзор моделей прогнозирования
- •1.3.1. Регрессионные модели
- •1.3.2. Авторегрессионные модели
- •1.3.3. Модели экспоненциального сглаживания
- •1.3.4. Нейросетевые модели
- •1.3.5. Модели на базе цепей Маркова
- •1.3.6. Модели на базе классификационно-регрессионных деревьев
- •1.1.1. Другие модели и методы прогнозирования
- •1.4. Сравнение моделей прогнозирования
- •1.4.1. Достоинства и недостатки моделей
- •1.4.2. Комбинированные модели
- •1.5. Выводы
- •Тема 15. Регрессия
- •Введение
- •15.1. Постановка задачи регрессии
- •15.2. Линейная регрессия [25]
- •15.3. Полиномиальная регрессия [25]
- •15.4. Нелинейная регрессия [25]
- •15.5. Сглаживание данных [25]
- •15.6. Предсказание зависимостей [25]
- •Df Линейная регрессия
- •8. Регрессия
- •8.1. Детерминированные и статистические зависимости
- •8.2. Корреляция и коэффициент корреляции
- •8.3. Уравнения регрессии
- •8.3.1. Линейная регрессия
- •8.3.2. Полиномиальная регрессия
- •8.3.3. Нелинейная регрессия
- •8.4. Сглаживание данных
- •8.5. Предсказание зависимостей
- •Параболическая и экспоненциальная регрессия.
- •Аппроксимация. Параболическая регрессия
- •Интерполяция
- •[Править]Определения
- •[Править]Пример
- •[Править]Способы интерполяции [править]Интерполяция методом ближайшего соседа
- •[Править]Интерполяция многочленами
- •[Править]Определение и история
- •[Править]Классификация сплайнов
- •Интерполяционный сплайн
- •1.4. Линейные операторы
- •Фильтр Гаусса
- •Фильтр Лапласа
- •Компьтерное зрение. Оператор Собеля Среда, Февраль 10th, 2010 | Программирование (10 голосов, средний: 4.60 из 5)
- •Быстрое размытие по Гауссу
Требования к вейвлетам
Для осуществления вейвлет-преобразования вейвлет-функции должны удовлетворять следующим критериям[1]:
1. Вейвлет должен обладать конечной энергией:
2.
Если
фурье-преобразование
для
,
то есть
тогда должно выполняться следующее условие:
Это
условие называется условием допустимости,
и из него следует что вейвлет при нулевой
частотной компоненте должен удовлетворять
условию
или,
в другом случае, вейвлет
должен
иметь среднее равное нулю.
3. Дополнительный критерий предъявляется для комплексных вейвлетов, а именно, что для них Фурье-преобразование должно быть одновременно вещественным и должно убывать для отрицательных частот.
4. Локализация: вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его средняя частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным – сужение вейвлета вдвое должно повышать его среднюю частоту и ширину спектра также вдвое.
Свойства вейвлет преобразования
1. Линейность
2. Инвариантность относительно сдвига
Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0.
3. Инвариантность относительно масштабирования
Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала.
4. Дифференцирование
Отсюда следует, что безразлично, дифференцировать ли функцию или анализирующий вейвлет. Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Это свойство особенно полезно, если сигнал задан дискретным рядом.
Непрерывное вейвлет-преобразование
Вейвлет преобразование для непрерывного сигнала относительно вейвлет функции определяется следующим образом[1]:
где
означает
комплексное сопряжение для
,
параметр
соответствует
временному сдвигу, и называется параметром
положения, параметр
задает
масштабирование и называется параметром
растяжения.
—
весовая функция.
Мы можем определить нормированную функцию следующим образом
что означает временной сдвиг на b и масштабирование по времени на a. Тогда формула вейлет-преобразования изменится на
Исходный сигнал может быть восстановлен по формуле обратного преобразования
Дискретное вейвлет-преобразование
В дискретном случае, параметры масштабирования a и сдвига b представлены дискретными величинами:
и
Тогда анализирующий вейвлет имеет следующий вид:
где m и n — целые числа.
В таком случае для непрерывного сигнала дискретное вейвлет-преобразование и его обратное преобразование запишутся следующими формулами:
Величины
также
известны как вейвлет-коэффициенты.
есть
постоянная нормировки.
Графическое представление
Временное и спектральное представления WAVE-вейвлета
Временное и спектральное представления вейвлета Морле
Применение
Вейвлет-преобразование широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. В дискретном вейвлет-преобразовании наиболее значимая информация в сигнале содержится при высоких амплитудах, а менее полезная — при низких. Сжатие данных может быть получено за счет отбрасывания низких амплитуд. Вейвлет-преобразование позволяет получить высокое соотношение сжатия в сочетании с хорошим качеством восстановленного сигнала. Вейвлет-преобразование было выбрано для стандартов сжатия изображений JPEG2000 и ICER. Однако, при малых сжатиях вейвлет-преобразование уступает по качеству в сравнении с оконным Фурье-преобразованием, которое лежит в основе стандарта JPEG.
Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, т.к. они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований. Отсюда следует, что при практическом использовании вейвлетов необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа.