Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика 1-10..docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
92.65 Кб
Скачать

38(5). Импликация (если…, то…), эквиваленция (если и только если…, то…)

Импликация (лат. implicatio — связь) — бинарная логическая связка, по своему применению приближенная к союзам «если… то…».

Импликация записывается как посылка   следствие; применяются также стрелки другой формы и направленные в другую сторону (остриё всегда указывает на следствие).

Суждение, выражаемое импликацией, выражается также следующими способами:

  • Посылка является условием, достаточным для выполнения следствия;

  • Следствие является условием, необходимым для истинности посылки.

(Для себя. Бинарная операция (от лат. bi — два) — математическая операция, принимающая два аргумента и возвращающая один результат).

Как Вы думаете, в каком случае два простых высказывания можно считать эквивалентными (равносильными). Чисто интуитивно можно догадаться, что высказывания эквивалентны, когда их значения истинности одинаковы. Например, эквивалентны высказывания: "железо тяжелое" и "пух легкий", так же как и высказывания: "железо легкое" и "пух тяжелый". Обозначим эквиваленцию символом <=> (возможно ~ или ↔) и запись "А <=> В" будем читать "А эквивалентно В", или "А равносильно В", или "А, если и только если В". Запишем определение:

Эквиваленцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда оба эти высказывания А и В истинны или оба ложны.

Отметим, что высказывание типа "А, если и только если В" можно заменить высказыванием "Если А, то В и, если В, то А" (обдумайте это на досуге и обратите внимание на символ<=>). Следовательно, функцию эквиваленции можно заменить комбинацией функций импликации и конъюнкции. Запишем таблицу истинности для эквиваленции:

А

В

А<=>В

И

И

Л

Л

И

Л

И

Л

И

Л

Л

И

41(6). Множества. Операции над множествами.

Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит, и не имеющее определения. Однако, можно дать описание множества, например, в формулировке Георга Кантора:

Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).

Над множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико-множественными операциями или сет-операциями. В результате операций из исходных множеств получаются новые.

Операции над множествами Бинарные операции

Ниже перечислены основные операции над множествами:

  • пересечение:

  • объединение:

Если множества   и   не пересекаются,то  . Их объединение обозначают также:  .

  • разность (дополнение):

  • симметрическая разность:

  • Декартово или прямое произведение:

Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]