
- •21. Механистическая картина мира. Законы Ньютона. Понятие силы, импульса тела.
- •22. Механическая энергия (кинетическая, потенциальная). Закон сохранения энергии. Консервативные силы. Диссипативные силы.
- •23. Масса. Инерция. Закон эквивалентности инерционной и гравитационной масс.
- •24. Три принципа научного познания действительности.
- •25. Механистический принцип относительности и инвариантности Галилея.
- •26. Теорема Эмми Нётер и следствия из теоремы.
- •27. Симметрия. Виды симметрии. Калибровочная симметрия. Хиральность. Суперсимметрия. Супергравитация.
- •28. Современные представления о пространстве - времени. Постулаты Эйнштейна. Следствия из специальной теории относительности (сто).
- •29. Элементы общей теории относительности (ото) Эйнштейна. Доказательства "ото".
- •30. Электромагнитная волна. Скорость электромагнитной волны в вакууме. Эффект Доплера.
- •31. Лазеры. Свойства лазерного излучения. Принципы работы лазера и его практическое применение
- •32. Квантовая модель атома Резерфорда-Бора.
- •33. Постулаты Бора.
- •34. Элементарные частицы. Переносчики фундаментальных взаимодействий (глюоны, векторные бозоны, гравитоны, фотоны).
- •35. Элементы квантовой механики. Квантово-полевая картина мира. Представление о микрообъекте. Волны де Бройля. Волны вероятностей Шредингера.
- •36. Принцип неопределенностей Гейзенберга в квантовой механике.
- •37. Принцип дополнительности Бора.
- •38. Корпускулярная и континуальная (непрерывная) концепции описания природы. Понятие интерференции и дифракции света. Фотон. Двойственность природы света.
- •39. Внешний фотоэффект. Уравнение Эйнштейна для фотоэффекта.
- •40. Понятие энтропии. Энтропия – показатель степени хаоса. Негэнтропия – отрицательная энтропия (информация).
28. Современные представления о пространстве - времени. Постулаты Эйнштейна. Следствия из специальной теории относительности (сто).
Пространство-время — физическая модель, дополняющая пространство равноправны временным измерением и, таким образом, создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Концепцию пространства-времени допускает и классическая механика, но в ней это объединение искусственно, так как пространство-время классической механики — прямое произведение пространства на время, то есть пространство и время независимы друг от друга. Однако уже классическая электродинамика требует при смене системы отсчета преобразований координат, включающих время «наравне» с пространственными координатами (т. н. преобразований Лоренца), если желать, чтобы уравнения электродинамики имели одинаковый вид в любой инерциальной системе отсчета; непосредственно наблюдаемые временные характеристики электромагнитных процессов (периоды колебаний, времена распространения электромагнитных волн и т. п.) также оказываются таким образом уже в классической электродинамике зависящими от системы отсчета (или, иначе говоря, от относительного движения наблюдателя и объекта наблюдения), то есть не являются «абсолютными», а определенным образом связаны с пространственным движением и даже положением в пространстве, что и явилось первым толчком для формирования современной физической концепции единого пространства-времени. В контексте теории относительности время неотделимо от трех пространственных измерений и зависит от скорости наблюдателя (см. собственное время). Концепция пространства-времени сыграла исторически ключевую роль в создании геометрической теории гравитации. В рамках общей теории относительности гравитационное поле сводится к проявлениям геометрии четырехмерного пространства-времени, которое в этой теории не является плоским (гравитационный потенциал в ней отождествлен с метрикой пространства-времени) Количество измерений, необходимых для описания Вселенной, окончательно не определено. Теория струн (суперструн), например, требовала наличия 10 (считая время), а теперь даже 11 измерений (в рамках М-теории). Предполагается, что дополнительные (ненаблюдаемые) 6 или 7 измерений свёрнуты (компактифицированы) до планковских размеров, так что экспериментально они пока не могут быть обнаружены. Ожидается, тем не менее, что эти измерения каким-то образом проявляют себя в макроскопическом масштабе. В самом старом — бозонном — варианте теория струн требует 26-мерного объемлющего пространства-времени; предполагается, что "лишние" измерения этой теории также должны или могут (или есть надежда, что так) быть компактифицированы сперва до 10, сводясь таким образом к теории суперструн, а потом уже, как упомянуто здесь чуть выше, до 4 обчных измерений.
1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.
2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.
На смену классической физике, построенной на принципах механики И. Ньютона, пришла новая фундаментальная теория — специальная теория относительности А. Эйнштейна, которая гласит: любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии прямолинейного и равномерного движения, т.е. все инерциальные системы отсчета равноправны между собой. Таким образом было преодолено представление об эталонной абсолютной системе отсчета, которую связывали с эфиром, все системы отсчета были признаны равнозначными, не имеющими никаких преимуществ друг перед другом, а принцип относительности приобрел всеобщий, универсальный характер. Следствием такого понимания принципа относительности стало введение в физику понятия инвариантности. Инвариантность понимается как неизменность физических величин или свойств объектов при переходе от одной системы отсчета к другой. Все законы природы неизменны при переходе от одной инерциальной системы к другой, т.е., находясь внутри инерциальной системы, невозможно обнаружить, движется она или покоится. А. Эйнштейн сформулировал также принцип инвариантности скорости света, который гласит: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света является предельной скоростью распространения материальных взаимодействий и равна 300 000 км/с.