Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
9-12(исправлен).doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
390.14 Кб
Скачать

6.2. Свойства скалярного произведения

    1. Скалярное произведение обладает переместительным свойством: ab=ba

 

Решение:                                                             

5. Если векторы а и b (ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если a b, то ab=0. Справедливо и обратное утверждение: если ab=0 и а 0 b, то а  b

.

6.3. Выражение скалярного произведения через координаты

Пусть заданы два вектора

Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:

  

    т.е

Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.

Пример 6.2.

Доказать, что диагонали четырехугольника, заданного координатами вершин А(-4;-4;4), В(-3;2;2),C(2; 5;1), D(3;-2;2), взаимно перпендикулярны.

Решение: Составим вектора АС и BD, лежащие на диагоналях данного четырехугольника. Имеем: АС = (6;9;-3) и BD = (6;-4;0). Найдем скалярное произведение этих векторов:

АСBD = 36 - 36 - 0 = 0.

Отсюда следует, что ACBD. Диагонали четырехугольника ABCD взаимно перпендикулярны.

11

Векторным произведением векторов и называется вектор , который определяется следующими условиями:

1) Его модуль равен где - угол между векторами и .

2) Вектор перпендикулярен к плоскости, определяемой перемножаемыми векторами и .

3) Вектор направлен так, что наблюдателю, смотрящему с его конца на перемножаемые векторы и , кажется, что для кратчайшего совмещения первого сомножителя со вторым первый сомножитель нужно вращать против часовой стрелки (см. рисунок).

Векторное произведение векторов и обозначается символом :

     (25)

или

     (26)

Основные свойства векторного произведения:

1) Векторное произведение равно нулю, если векторы и коллинеарны или какой-либо из перемножаемых векторов является нулевым.

2) При перестановке местами векторов сомножителей векторное произведение меняет знак на противоположный (см. рисунок):

Векторное произведение не обладает свойством переместительности.

3) (распределительное свойство).

Выражение векторного произведения через проекции векторов и на координатные оси прямоугольной системы координат дается формулой

     (27)

которую можно записать с помощью определителя

     (28)

Проекции векторного произведения на оси прямоугольной системы координат вычисляются по формулам

     (29)

и тогда на основании (4)

     (30)

Механический смысл векторного произведения состоит в следующем: если вектор - сила, а вектор есть радиус-вектор точки приложения силы, имеющий свое начало в точке O, то момент силы относительно точки O есть вектор, равный векторному произведению радиуса-вектора точки приложения силы на силу , т. е.

Векторно-скалярное произведение трех векторов , и или смешанное их произведение вычисляется по формуле

     (31)

Абсолютная величина векторно-скалярного произведения равна объему параллелепипеда, построенного на векторах , и . Объем пирамиды, построенной на векторах , и , получим по формуле

     (32)

причем знак перед определителем должен быть выбран так, чтобы объем V был положительным (предполагается, что векторы , и не лежат в одной плоскости).

20. Три вектора , и называются компланарными, если они лежат в одной плоскости или параллельны одной и той же плоскости. Для того, чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение было равно нулю.

12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]