
Министерство образования и науки, молодежи и спорта Украины
Донбасский государственный технический университет
Кафедра ГС и СГ
Реферат
На тему:
«Методы повышения точности измерений»
Выполнила: ст. гр. ГС-09
Епишева О. В.
Проверил: доц.
Шульгин П. Н.
Алчевск, 2013
Содержание
Введение 3
Действительные и истинные значения. 4
Виды погрешностей. 6
Случайные погрешности. 9
Систематические погрешности. 10
Точность измерения 12
Выявление и устранение причин возникновения
погрешностей. 14
Заключение 19
Список использованной литературы 20
Введение
Одна из главных задач метрологических служб предприятий - обеспечение требуемой точности измерений, выполняемых на различных стадиях производства продукции. В условиях острой конкурентной борьбы за первенство на российском и международном рынках возрастают требования, предъявляемые к качеству выпускаемых изделий, и появляется очередная задача - повышение точности измерений.
Повышение точности измерений всегда способствовало развитию не только отдельной отрасли народного хозяйства, но и мирового научно-технического прогресса, улучшению жизни и здоровья людей. Значительное повышение точности измерений неоднократно являлось основной предпосылкой фундаментальных научных открытий.
Так, повышение точности измерения плотности воды в 1932 году привело к открытию тяжелого изотопа водорода - дейтерия, определившего бурное развитие атомной энергетики.
Благодаря гениальному осмыслению результатов экспериментальных исследований по интерференции света, выполненных с высокой точностью и опровергнувших существовавшее до того мнение о взаимном движении источника и приемника света, Альберт Эйнштейн создал свою всемирно известную теорию относительности.
Основные методы повышения точности измерений, применяемые сегодня на практике, изложены в рекомендациях по межгосударственной стандартизации РМГ 64-2003 «ГСИ. Обеспечение эффективности при управлении технологическими процессами. Методы и способы повышения точности измерений».
Действительные и истинные значения.
Для проведения измерений необходимы:
объект измерений (или, другими словами, измеряемая величина);
метод измерений;
средства измерений и вспомогательное оборудование;
оператор.
Кроме того, измерения выполняют в какой-либо среде и по определенным правилам.
Принято объект измерений считать неизменным, т.е. всегда предполагается, что существует истинное постоянное значение измеряемой величины. Остальные составляющие процесса измерений - и средства измерений (СИ), и условия, и даже оператор - могут, вообще говоря, меняться. Эти изменения могут быть случайными, их мы не в состоянии предвидеть. Они могут быть и не случайными, но такими, которые мы не смогли заранее предусмотреть и учесть. Если они влияют на результаты измерений, то при повторных измерениях одной и той же величины результаты будут отличаться один от другого тем сильнее, чем больше факторов не учтено и чем сильнее они меняются.
Всегда есть определенный предел числу явлений, влияющих на результаты измерений, которые принимаются в расчет. Вследствие этого даже очень точное измерение будет содержать погрешность измерений Δ которая является отклонением результата измерения x от истинного значения X:
Δ = x - X
Истинным значением физической величины X называется такое ее значение, которое идеальным образом отражает понятие «физическая величина» с точки зрения количества и качества. Истинного значения физической величины мы никогда узнать не сможем и поэтому в формулу погрешности измерения подставляем действительное значение Хд, т.е. значение, найденное опытным путем и настолько приближающееся к истинному, что для данной цели может быть использовано вместо него. Отсюда можно сделать вывод о том, что если истинное значение одно, то действительных значений может быть несколько.
Погрешность измерений зависит от свойств применяемых СИ; способов их использования; правильности калибровки и поверки СИ; условий, в которых выполняется измерение; скорости (частоты) изменения измеряемых величин; алгоритмов вычислений; погрешности, вносимой оператором, и т.д.