
- •2.Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм.
- •3.Основные этапы применения математических методов в финансово-экономических расчетах (иллюстрация на конкретном примере).
- •4.Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия.
- •6.Графический метод решения задачи линейного программирования.
- •7.Формы записи злп. Каноническая форма записи злп. Способы приведения злп к каноническому виду.
- •8. Основы симплекс-метода: общая схема алгоритма метода. Понятие базиса системы векторов. Базисные и опорные решения системы линейных уравнений, переход от одного базисного решения к другому
- •9.Особые случаи решения злп симплексным методом.
- •10.Построение м-задачи .
- •10.Симплекс-метод с искусственным базисом, алгоритм метода.
- •11.Теоремы двойственности и их использование для анализа оптимальных решений.
- •12.Свойства двойственных оценок и их использование для анализа оптимальных решений.
- •13.Особые случаи решения злп графическим методом.
- •15.Двойственные оценки в злп, интервалы устойчивости двойственных оценок, определение средствами Excel.
- •Двойственная задача линейного программирования Теоремы двойственности и их экономическая интерпретация.
- •22.Постановка и экономико-математическая модель закрытой транспортной задачи.
- •24.Задача о назначениях, постановка и эмм.
- •32.Невырожденным поток в сети. Остовное дерево. Критический путь
- •33 Алгоритм о нахождении кратчайшего пути. Этапы методов сетевого планирования.
- •36.Метод cpm.(метод критического пути)
- •Основные свойства задачи линейного программирования.
- •Симплекс-метод с естественным базисом, алгоритм метода.
- •Правило построения двойственной задачи, математическая запись.
- •Общая классификация задач оптимального программирования.
- •Экономическая интерпретация злп, пример постановки задачи и эмм.
9.Особые случаи решения злп симплексным методом.
1ый особый случай решения ЗЛП: решение не единственное (линия уровня параллельна одной из линий на границе области допустимых решений). Это означает, что задача имеет бесконечное множество оптимальных решений. Его задают координаты точек отрезка с угловыми точками.
2ой особый случай решения ЗЛП – задача не имеет решения, т.к. область решений не ограничена сверху.
3ий особый случай решения ЗЛП – задача не имеет решения, т.к множество планов пусто, нет ни одной общей точки.
Статистические показатели динамики экономических процессов [1 стр.157-163].
Матрица планирования транспортной задачи, учет особых случаев [1 стр.100-02].
9Симплексный метод. Условие оптимальности. Условие допустимости. Особые случаи симплекс – метода. Симплекс метод - это характерный пример итерационных вычислений, используемых при решении большинства оптимизационных задач. В вычислительной схеме симплекс-метода реализуется упорядоченный процесс, при котором, начиная с некоторой исходной допустимой угловой точки (обычно начало координат), осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор, пока не будет найдена точка, соответствующая оптимальному решению. Симплекс метод - универсальный метод для решения линейной системы уравнений или неравенств и линейного функционала.Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП (задачи линейного программирования) состоит:
- умение находить начальный опорный план; - наличие признака оптимальности опорного плана; -умение переходить к нехудшему опорному плану. С помощью анализа модели на чувствительность определить параметр, от которого результат зависит больше и решить, каким способом возможно увеличение эффективности и на сколько, а так же многое другое. Программа использования симплекс-метода предусмотрена для решения систем линейных неравенств табличным методом, а так же для попытки оптимизации различных экономических, социальных и т. д. проблем. Симплекс-метод может применяться на государственных и частных предприятиях для улучшения эффективности производства. Алгоритм решения ЗЛП симплексным методом Симплекс-метод подразумевает последовательный перебор всех вершин области допустимых значений с целью нахождения той вершины, где функция принимает экстремальное значение. На первом этапе находится какое-нибудь решение, которое улучшается на каждом последующем шаге. Такое решение называется базисным. Первый шаг.В составленной таблице сначала необходимо просмотреть столбец со свободными членами. Если в нем имеются отрицательные элементы, то необходимо осуществить переход ко второму шагу, если же нет, то к пятому. Второй шаг.На втором шаге необходимо определиться, какую переменную исключить из базиса, а какую включить, для того, что бы произвести перерасчет симплекс-таблицы. Для этого просматриваем столбец со свободными членами и находим в нем отрицательный элемент. Строка с отрицательным элементом будет называться ведущей. В ней находим максимальный по модулю отрицательный элемент, соответствующий ему столбец - ведомый. Если же среди свободных членов есть отрицательные значения, а в соответствующей строке нет, то такая таблица не будет иметь решений. Переменная в ведущей строке, находящаяся в столбце свободных членов исключается из базиса, а переменная, соответствующая ведущему столбцу включается в базис.