Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-43.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
434.36 Кб
Скачать

36 Ряды динамики. Аналитические показатели ряда динамики.

Динамика означает изменение процессов во времени, поэтому ряд статистических показателей, характеризующий изменение общественных явлений во времени называется динамическим рядом.

Показатели, из которых состоит динамический ряд называются уровнями динамического ряда и обозначаются - У, а период времени, за который они представлены - t.

В теории статистики различают следующие виды динамических рядов:

Моментные ряды динамики. Моментным называется ряд, уровни которого характеризуют размеры социально-экономических явлений по состоянию на определенную дату или определенный момент времени.

Периодические (интервальные) ряды динамики. Периодический ряд - это такой ряд, уровни которого характеризуют размеры общественно-экономических явлений за определенный период (интервал) времени.

Анализ скорости и интенсивности развития явления во времени осуществляется с помощью аналитических показателей, которые получаются в результате сравнения уровней ряда между собой. К таким показателям относятся: абсолютный прирост, темп роста и прироста, абсолютное значение одного процента прироста. При этом принято сравниваемый уровень называть отчетным, а уровень, с которым происходит сравнение - базисным. Абсолютный прирост (Dу) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Он равен разности двух сравниваемых уровней и выражает абсолютную скорость роста: Di =уi-yi-k (i=1,2,3,...,n) Если k=1, то уровень yi-1 является предыдущим для данного уровня, а абсолютные приросты изменения уровня будут цепными. Если же k постоянны для данного ряда, то абсолютные приросты будут базисными. Интенсивность изменения уровня оценивается отношением отчетного уровня к базисному, которое всегда представляет собой положительное число. Показатель интенсивности изменения уровня ряда - в зависимости от того, выражается ли он в виде коэффициента или в процентах, принято называть коэффициентом роста или темпом роста. Иными словами, коэффициент роста и темп роста представляют собой две формы выражения интенсивности изменения уровня. Однако необходимо отметить, что ненужно пользоваться одновременно двумя формами, которые по существу идентичны. Разница между ними заключается только в единице измерения. Коэффициент роста показывает во сколько раз данный уровень ряда больше базисного уровня (если этот коэффициент больше единицы) или какую часть базисного уровня составляет уровень текущего периода за некоторый промежуток времени (если он меньше единицы). В качестве базисного уровня в зависимости от цели исследования может приниматься какой-то постоянный для всех уровень (часто начальный уровень ряда), либо для каждого последующего предшествующий ему:  (9.3) В первом случае говорят о базисных темпах роста, во втором - о цепных темпах роста. Наряду с темпом роста можно рассчитать показатель темпа прироста, характеризующий относительную скорость изменения уровня ряда в единицу времени. Темп прироста показывает, на какую долю (или процент) уровень данного периода или момента времени больше (или меньше) базисного уровня. Темп прироста есть отношение абсолютного прироста к уровню ряда, принятого за базу:   Если темп роста всегда положительное число, то темп прироста может быть положительным, отрицательным и равным нулю. В статистической практике часто вместо расчета и анализа темпов роста и прироста вычисляют абсолютное значение одного процента прироста. Оно представляет собой одну сотую часть базисного уровня и в то же время - отношение абсолютного прироста к соответствующему темпу прироста: (9.5) где |%| - обозначение абсолютного значения одного процента прироста. Таким образом, базисные показатели динамики характеризуют окончательный результат всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до данного (i-го) периода. Цепные показатели динамики характеризуют интенсивность изменения уровня от периода к периоду (или от даты к дате) в пределах изучаемого промежутка времени

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]