Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры 1-10.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
414.17 Кб
Скачать

23) Распределение электронов по состояниям в атоме.

В одной и той же квантовой системе в одно и тоже время не может быть 2-х тождественных электрнов. Подобным свойством обладает любая частица, имеющая полуспин. Частица с получелым пином называется фермионами, т.к. они подчиняются квантовой статистике Ферми-Дерака.. Частица с целым спином или нулевым спином называется бозонами т.к. подчиняется статистике Бозе-Энштейна. Состояние электрона в атоме однозначно определяется набором четырех квантовых чисел:

24) Объяснение периодической системы элементов Менделеева.

Так как химические и некоторые физические свойства элементов объясняются внешними (валентными) электронами в атомах, то периодичность свойств химических элементов должна быть связана с определенной периодичностью в расположении электронов ватомах. Поэтому для объяснения таблицы будем считать, что каждый последующий элемент образован из предыдущего прибавлением к ядру одного протона и соответственно прибавлением одного электрона в электронной оболочке атома. Взаимодействием электронов пренебрегаем, внося, где это необходимо, соответствующие поправки. Рассмотрим атомы химических элементов, находящиеся в основном состоянии периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов (заполненные s- и p-состояния); во внешней оболочке щелочных металлов (Li, Na, К, Rb, Cs, Fr) имеется лишь один s-электрон; во внешней оболочке щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) имеется два s-электрона; галоиды (F, О, Br, I, At) имеют внешние оболочки, в которых недостает одного электрона до оболочки инертного газа, и т. д. 25.тормозное рентгеновское излучение. Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра.Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами. Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов.   Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой.Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей).      Начальная скорость электрона  при попадании на анод определяется по формуле: ,где U – ускоряющее напряжение.

26.Характеристическое рентгеновское излучение. Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими. Состояние атома с вакансией во внутренней оболочке неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом испускает избыток энергии в виде фотона характеристического излучения: Все переходы на k-оболочку образуют K-серию, соответственно, на l- и m-оболочки – L- и M-серии (рис. 2.8). Английский физик Генри Мозли в 1913 году установил закон, названный его именем, связывающий частоты линий рентгеновского спектра с атомным номером испускающего их элемента Z: Здесь R=3,29*10^15 c^-1, постоянная Ридберга; σ – постоянная, учитывающая экранирующую роль окружающих ядро электронов. Чем дальше электрон от ядра, тем σ больше. 30.Образование энергетических зон при образовании кристалла. Уменьшение высоты потенциальных барьеров при сближении атомов (рис. 9.2) приводит к тому, что валентные электроны в металле перестают быть локализованными в конкретном атоме, а переходят от одного атома к другому. Может показаться, что такие переходы приводят к нарушению принципа Паули и в любой момент в атоме может оказаться несколько электронов с одинаковой энергией. Однако при образовании кристалла происходит не только уменьшение высоты потенциального барьера, но и качественное изменение энергетических уровней электронов в атомах. Воспользуемся соотношением неопределенности энергии-времени , где - время нахождения электрона в энергетическом состоянии, характеризующемся интервалом энергии от E до E+DE. Величина DE определяет ширину энергетического уровня, если известно время пребывания на нем электрона. В изолированном атоме время Dt сколь угодно велико, поэтому DE исчезающе мало.В кристалле скорость движения электронов V ~ 105 м/с, поэтому около данного узла решетки он находится в течение приблизительно 10-15 с. Приняв это значение времени за Dt, получим ширину энергетического уровня DE ~ 1 эВ. Такой результат свидетельствует о том, что при образовании кристалла энергетический уровень электрона расщепляется в энергетическую зону (

30. Функция Ферми – Дирака. Энергия Ферми. Понятие вырожденного и невырожденного электронного газа. Условие вырождения.Функция Ферми-Дирака описывает равновесное состояние электронов. Если при какой-то температуре электронов нет, то будет происходить термогенерация электронов и дырок, и постепенно они распределятся по функции Ферми-Дирака.

В физике, энергия Ферми (EF) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур.

Вырожденный газ — газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. В собственных полупроводниках электронный или дырочный газ в, соответственно, зоне проводимости или валентной зоне, невырожденный.

Условия вырождения выполняются при достаточно низкой температуре T (для идеального газа v≈√T ) и высокой концентрации частиц.Уровень Ферми - уровень энергии, ниже которого все состояния при T = 0K заняты электронами.

32)Зонные модели металлов, полупроводников и диэлектриков.полупроводники — зоны не перекрываются, и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости, требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.металлы — зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы. диэлектрики — зоны не перекрываются, и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят. Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала. Энергетический спектр электронов в кристалле в одноэлектронном приближении описывается уравнением Шрёдингера: ,где   — периодический потенциал кристалла.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]