
- •1. Фотоны. Энергия, масса и импульс фотона
- •2.Тепловое излучение и его характеристики.
- •3. Законы Кирхгофа, Вина и Стефана-Больцмана.
- •4.Квантовая гипотеза Планка и формула Планка.
- •5. Давление света
- •6. Комптон – эффект и его объяснение
- •7. Внешний фотоэффект. Вольтамперная характеристика фотоэффекта. Законы Столетова. Уравнение Эйнштейна
- •8.Опыты Резерфорда и планетарная модель атома.
- •10.Теория атома водорода и водородоподобного иона.
- •11) Спектр атома водорода
- •12) Опыт Франка - Герца
- •13) Волны де Бройля. Статистический смысл волн де Бройля, свойства волн
- •14) Соотношение неопределенностей.
- •15. Волновая функция: её свойства и смысл
- •16.Уравнение Шредингера общее и стационарное.
- •18. Туннельный эффект. Коэффициент прозрачности барьера
- •20. Квантование энергии, момента импульса и проекции момента импульса электрона в атоме водорода
- •23) Распределение электронов по состояниям в атоме.
- •24) Объяснение периодической системы элементов Менделеева.
- •33)Распределение электронов в чистых и примесных полупроводниках.
- •37)Состав и основные характеристики ядер.
- •40. Энергия связи протона, нейтрона и ядерного фрагмента
- •42. Активность и зависимость активности от времени.
- •43. Альфа- распад
- •Вопрос 46
- •47. Ядерные реакции, их закономерности. Реакции деления. Реакции синтеза. Энергетический выход реакции.
- •49.Энергия ядерной реакции.
- •50.Деление ядер.
- •51.Реакция термоядерного синтеза.
- •52.Элементарные частицы и современная физическая картина Мира
47. Ядерные реакции, их закономерности. Реакции деления. Реакции синтеза. Энергетический выход реакции.
Я́дерная реа́кция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, часто приводящий к выделению колоссального количества энергии. При протекании ядерных реакций выполняются следующие законы: сохранения электрического заряда и числа нуклонов, сохранения энергии и
импульса, сохранения момента импульса, сохранения четности и
изотопического спина.
Реакция деления – деление атомного ядра на несколько более легких ядер. Деления бывают вынужденные и спонтанные.
Реакция синтеза – реакция слияния лёгких ядер в одно. Эта реакция происходит только при высоких температурах, порядка 108 К и называется термоядерной реакцией.
Энергетическим выходом реакции Q называется разность между суммарными энергиями покоя всех частиц до и после ядерной реакции. Если Q >0, то суммарная энергия покоя уменьшается в процессе ядерной реакции. Такие ядерные реакции называются экзоэнергетическими. Они могут протекать при сколь угодно малой начальной кинетической энергии частиц. Наоборот, при Q <0 часть исходной кинетической энергии частиц превращается в энергию покоя. Такие ядерные реакции называются эндоэнергетическими.
Закон сохранения энергии
Если Е1,Е2,Е3,Е4— полные энергии двух частиц до реакции и после реакции, то на основании закона сохранения энергии:
Е1+Е2=Е3+Е4
При
образовании более двух частиц
соответственно число слагаемых в правой
части этого выражения должно быть
больше. Полная энергия частицы равна
её энергии
покоя
Mc2
и кинетической энергии E,
поэтому:
Разность суммарных кинетических энергий частиц на «выходе» и «входе» реакции Q = (E3 + E4) − (E1 + E2) называется энергией реакции (или энергетическим выходом реакции). Она удовлетворяет условию:
М1+М2=М3+М4+Q/c^2
Множитель 1/c2 обычно опускают, при подсчёте энергетического баланса выражая массы частиц в энергетических единицах (или иногда энергии в массовых единицах).
Если Q > 0, то реакция сопровождается выделением свободной энергии и называется экзоэнергетической, если Q < 0, то реакция сопровождается поглощением свободной энергии и называется эндоэнергетической.
Легко заметить, что Q > 0 тогда, когда сумма масс частиц-продуктов меньше суммы масс исходных частиц, то есть выделение свободной энергии возможно только за счёт снижения масс реагирующих частиц. И наоборот, если сумма масс вторичных частиц превышает сумму масс исходных, то такая реакция возможна только при условии затраты какого-то количества кинетической энергии на увеличение энергии покоя, то есть масс новых частиц. Минимальное значение кинетической энергии налетающей частицы, при которой возможна эндоэнергетическая реакция, называется пороговой энергией реакции. Эндоэнергетические реакции называют также пороговыми реакциями, поскольку они не происходят при энергиях частиц ниже порога.
Закон сохранения импульса
Полный
импульс частиц до реакции равен полному
импульсу частиц-продуктов реакции. Если
,
,
,
—
векторы импульсов двух частиц до реакции
и после реакции, то
Каждый из векторов может быть независимо измерен на опыте, например, магнитным спектрометром. Экспериментальные данные свидетельствуют о том, что закон сохранения импульса справедлив как при ядерных реакциях, так и в процессах рассеяния микрочастиц.
Закон сохранения момента импульса
Момент количества движения также сохраняется при ядерных реакциях. В результате столкновения микрочастиц образуются только такие составные ядра, момент импульса которых равен одному из возможных значений момента, получающегося при сложении собственных механических моментов (спинов) частиц и момента их относительного движения (орбитального момента). Каналы распада составного ядра также могут быть лишь такими, чтобы сохранялся суммарный момент количества движения (сумма спинового и орбитального моментов).