
- •Предмет. Основы.
- •3 Раздела теор механики:
- •Статика. Атт. Материальная точка.
- •Аксиомы статики
- •Проекция векторов на ось.
- •Уравнение равновесия сходящихся сил.
- •Разложение сил на составляющие.
- •Момент пары сил.
- •Момент силы относительно точки.
- •Приведение сил к точке.
- •Приведение системы сил к точке.
- •Статически неопределимые задачи.
- •Трение скольжения.
- •Трение качения
- •Введение в кинематику.
- •Задание движения точки. Естественный способ.
- •Координатный способ задания движения точки.
- •Равномерное движение.
- •Скорость точки.
- •Проекция скорости точки на оси координат.
- •Определение скорости точки при координатном способе задания движения.
- •Ускорение точки.
- •Касательное и нормальное ускорения точки
- •Равномерное движение точки.
- •Поступательное движение тела.
- •Вращение точки вокруг неподвижной оси.
- •Скорости и ускорения точек вращающегося тела.
- •Передача вращательного движения.
- •Конические зубчатые передачи.
- •Фрикционная передача.
- •Составное движение точки. Относительное и переносное движение.
- •Теорема сложения скоростей.
- •Плоскопараллельное движение твердого тела.
- •Разложение плоской фигуры на поступательную и вращательную скорости точек плоской фигуры.
- •Составное движение твёрдого тела. Сложение 2-х вращательных движений вокруг параллельных осей.
- •1 Случай) Направления вращений одинаковы
- •Эпициклические механизмы.
- •Основные з-ны динамики.
- •Метод кинетостатики для материальной точки.
- •Работа постоянной силы на прямолинейном участке цепи.
- •Работа переменной силы на криволинейном пути.
- •Работа равнодействующей силы, приложенной к одной точке.
- •Работа сил тяжести.
- •Работа сил упругой пружины.
- •Мощность.
- •Теорема об изменении Кин энергии точки.
- •Теорема об изменении кол-ва движения мат т. При действии пост-ой силы.
- •Система точек мат тела. Центр масс системы.
- •Кин энергия твердого тела.
- •Моменты инерции тела.
- •Сопротивление материалов.Вводные понятия.
- •Элементы конструкции.
- •Основные гипотезы и допущения сопромата.
- •Воздействие.
- •Деформации.
- •Метод сечений.
- •Силы при деформациях.
- •Напряжения.
- •Напряжения и деформации при растяжении.
- •Построение эпюр продольных сил и нормальных напряжений.
- •Поперечная деформация при растяжении и сжатии.
- •Диаграмма растяжения для стали.
- •Расчетные формулы при растяжении- сжатии.
- •Смятие.
- •Сдвиг. Напряжения при сдвиге.
- •Деформация и з-н Гука при сдвиге.
- •Статический момент площади.
- •Полярный момент инерции.
- •Кручение круглого цилиндра.
- •Напряжения и деформации при кручении.
- •Формулы для расчётов на прочность и жёсткость.
- •Изгиб. Чистый изгиб.
- •Изгибающий момент. Поперечная сила.
- •Детали машин. Основные понятия.
- •Требования, предъявляемые к конструкциям деталей машин.
- •Выбор материалов для изготовления деталей машин.
- •Цветные металлы.
- •Неметаллические материалы.
- •Разъемные соединения детали.
Основные гипотезы и допущения сопромата.
Основные гипотезы и допущения:
1) гипотеза о отсутствии первоначальных внутренних усилий – предположим что если нет причин вызывающих деформацию тела (нагрузки) то во всех его точках все его усилия равны 0, таким образом не принимается во внимание силы взаимодействия между частями и загруженного тела.
2) допущение об односторонности материала, физика – механические свойства тела могут не одинаковы в разных точках.
3) допущение о непрерывности материала, материал любого тела имеет непрерывное строение и представляет собой сплошную среду.
4) допущение об изотропности материала, предположим, что материал тела во всех направлениях обладает одинаковыми свойствами. Материал имеющий не одинаковые свойства в разных направлениях называют анизотропными (древесина).
5) допущение об идеальной упругости, предположим что в известных пределах нагружение материала обладает идеальной упругостью, то есть после снятия нагрузки деформация полностью исчезает.
Изменение линейных и угловых размеров тела называют соответственно линейной и угловой деформацией.
1)допущение о малости перемещения – (деформацией тела и связанное с ним перемещение точек и сечений весьма малы, по сравнению с размерами тела.
На основе этого пренебрегают изменениями в расположении внешних сил, вызванных деформацией.
2) допущение о минимальности деформированности тела – (перемещение точек и сечений упругого тела в известных пределах нагруженийпрямопропорциональны силам, вызывающим эти перемещения)
3) гипотеза плоских сечений (Бернулли) – (плоские поперечные сечения, проведенные в теле до деформации остаются плоскими и нормальными по отношению к оси.)
4) принцип независимости сил(одна из всех сил заменяется равнодействующе
Воздействие.
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и деформации узлов и деталей.
Силы, воспринимаемые элементами конструкций, являются либо массовыми, или объемными (силы тяжести, силы инерции), либо поверхностными силами контактного взаимодействия рассматриваемого элемента с соседними элементами или прилегающей к нему средой (например, пар, воздух, жидкость).
В теоретической механике мы установили, что поверхностные нагрузки бывают сосредоточенными или распределенными.
В зависимости от характера действия нагрузки подразделяют на статические и динамические.
Статистическими называются нагрузки числовое значение, направление и место которых остается постоянными иди меняется медленно и не значительно. Динамическими называются нагрузки характеризующиеся быстрым сцеплением во времени их направления или месте положения.
Деформации.
Из практики известно, что во время эксплуатаций испытывают следующие виды деформации
Основные виды деформаций:
1) растяжение – цепи; (тросы, элементы к которым прилагают силы направленные по одной плоскости но в разные стороны)
2) сжатие – колонны, в разные стороны к центру;
3) сдвиг – заделки, шпонки. Деформацию сдвига доведенную до разрушения материала называют срезом. (сварные соединения, винтовые, заклепочные)
4) кручение (припередачи мощности с помощью валов)
5) изгиб – балки, оси. (в сечении возникает изгибающий момент М в этом случае это деформация чистого изгиба, если в сечении одновременно возникает и М и Q то изгиб поперечный.
Закон Гука справедлив лишь в определенных пределах нагрузки. Нормальное напряжение прямо пропорционально относительному удлинению или укорочению. Е – коэффициент пропорциональности (модуль продольной упругости) характеризует жесткость материала, т.е. способность сопротивляться упругим деформациям растяжения или сжатия.