
- •Волновая и квантовая оптика
- •Раздел 8. Геометрическая оптика
- •Лекция 1. Законы геометрической оптики.
- •Введение
- •1. 1. Элементы геометрической оптики.
- •1. 2. Явление полного внутреннего отражения.
- •1. 3. Электромагнитная теория света.
- •Раздел 9.Волновая оптика
- •1. 1. Принцип Гюйгенса.
- •1.2. Интерференция световых волн.
- •1.3. Интерференционная картина.
- •1. 2. Метод Юнга. Получение интерференционной картины.
- •Лекция 2. Интерференция света в тонких пленках.
- •Лекция 3. Расчет интерференционной картины от двух источников
- •3.2. Применение интерференции.
- •Лекция 4. Дифракция света.
- •4. 1. Принцип Гюйгенса-Френеля.
- •4. 2. Метод зон Френеля.
- •4 . 3. Дифракция Френеля на круглом отверстии и диске.
- •3. 4. Дифракция Фраунгофера на прямоугольной щели.
- •3. 5. Дифракция Фраунгофера на дифракционной решетке.
- •3. 6. Дифракция рентгеновских лучей.
- •Лекция 5. Дисперсия света
- •5. 1. Поглощение света.
- •5. 2. Дисперсия света.
- •5. 3. Отражение и пропускание света. Окраска тел в природе.
- •Лекция 6. Поляризация света.
- •6.1. Естественный и поляризованный свет.
- •6. 2. Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред. Закон Брюстера.
- •6. 3. Поляризация света при двойном лучепреломлении.
- •6. 4. Методы поляризации света.
- •6. 5. Анализ плоскополяризованного света. Закон Малюса.
- •6. 6. Интерференция поляризованных лучей.
- •6. 7. Искусственная оптическая анизотропия.
- •6. 8. Оптическая активность веществ.
- •Раздел10. Квантовая природа излучения
- •Лекция 2. Формула Рэлея-Джинса.
- •2.1.Квантовый характер излучения.
- •2.2. Пирометрия и пирометры.
- •Лекция 3. Фотоэлектрический эффект.
- •Раздел 11.Элементы атомной физики и квантовой механики
- •Отрицательное поглощение. Генераторы когерентного света
- •Раздел 12..Элементы квантовой статистики и физики твердого тела
- •Раздел 13. Элементы физики атомного ядра и элементарных частиц
- •Библиографический список
6. 6. Интерференция поляризованных лучей.
Цуги волн
естественного света некогерентны, так
как соответствуют излучению различных,
независимых атомов источника света.
При прохождении естественного света
через одноосный анизотропный кристалл
разные цуги участвуют в образовании
обыкновенного и необыкновенного лучей.
Поэтому они некогерентны. Если же
пропустить через одноосный анизотропный
кристалл плоско поляризованный свет,
то обыкновенный и необыкновенный
свет будут когерентны и при
определенных условиях могут
интерферировать. Н
а
рисунке 6.14 представлена оптическая
схема, позволяющая наблюдать
интерференцию поляризованного света.
Естественный свет, пройдя через
поляризатор становится плоско
поляризованным. Далее он попадает на
пластинку, вырезанную из одноосного
анизотропного кристалла параллельно
оптической оси. Внутри пластинки он
разбивается на два луча обыкновенный
"о" и необыкновенный "е",
которые пространственно не разделены,
но движутся с разными скоростями. За
время прохождения через пластинку между
ними возникает разность хода
Δ = (no-ne) d
где d
– толщина пластины. Хотя эти лучи
когерентны и имеют оптическую разность
хода, но они не могут и
нтерферировать,
так как вектора колебания Ео
и Ее лежат во взаимно
перпендикулярных плоскостях. Поэтому,
чтобы получить интерференционную
картинку необходимо совместить плоскости
колебаний этих волн. Для этого применяют
анализатор.
Анализатор (рисунок 6.15) пропустит только ту составляющую каждого из векторов (на рисунке это вектора Ее' и Ео' ), которая будет параллельна плоскости анализатора (ОО'). Интерференционная картина, наблюдаемая на выходе из анализатора, зависит от многих факторов, таких как разности фаз, длины волны падающего света, от угла между осью поляризатора и оптической осью двояко преломляющей пластины и т. д.
6. 7. Искусственная оптическая анизотропия.
Оптически изотропные вещества могут стать анизотропными под действием ряда внешних воздействий, это явление называют искусственной оптической анизотропией.
Фотоупругость (или пьезооптический эффект) - возникновение оптической анизотропии в первоначально изотропных веществах под воздействием механических напряжений. Этот эффект первыми обнаружили Т. Зеебек (1813г.) и Д. Брюстер (1816г.). Например, при одностороннем сжатии или растяжении стеклянная пластина приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением сжатия или растяжения. При этом разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси, пропорциональна напряжению σ
no – ne = k σ,
где k – коэффициент, зависящий от свойств вещества. Явление искусственной оптической анизотропии при деформациях используется для обнаружения остаточных внутренних напряжений, которые могут возникать в изделиях из стекла и других прозрачных изотропных материалов вследствие несоблюдения технологии их изготовления. Оптический метод изучения на прозрачных моделях распределения внутренних напряжений, возникающих в различных деталях машин и сооружений широко применяется в современной технике.
Эффект Керра – Д. Керр (1875г.) исследовал связь между оптическими и электрическими явлениями и установил, что оптически изотропный диэлектрик в достаточно сильном электрическом поле приобретает свойства одноосного двояко преломляющего кристалла, оптическая ось которого совпадает с направлением напряженности электрического поля.
С
хема
установки для исследования эффекта
Керра показана на рисунке 6.16. Ячейку
Керра поместили между скрещенными
поляризатором и анализатором. Ячейка
Керра представляет собой герметичный
сосуд а с жидкостью, в которую погружены
обкладки плоского конденсатора. При
подаче на пластины напряжения между
ними возникает однородное электрическое
поле. Под действием этого поля жидкость
приобретает свойства одноосного
кристалла, оптическая ось которого
ориентирована вдоль поля. Возникающая
разность показателей преломления no
и ne
пропорциональна квадрату напряженности
поля Е
no – ne = k Е2,
или разность фаз
или
где В – постоянная Керра, зависящая от природы вещества, длины волны λ0 и температуры, l – длина ячейки Керра.
Эффект Керра объясняется различной поляризуемостью молекул по разным направлениям. В отсутствие поля молекулы ориентированы хаотично, поэтому жидкость не обладает анизотропией, Под действием поля молекулы поворачиваются так, чтобы в направлении поля были ориентированы либо их дипольные электрические моменты (у полярных молекул), либо направление наибольшей поляризуемости (у неполярных молекул). В результате жидкость становится оптически активной. Эффект Керра безынерционен: время, за которое вещество переходит из анизотропное состояние в изотропное и обратно, не превышает 10-9с. Ячейки Керра применяются при записи звука на кинопленку, а в сочетании со скещенными поляризатором и анализатором в скоростной съемке.
Эффект Коттона–Мутона (аналог эффекта Керра в магнитном поле)- это явление возникновения оптической анизотропии у некоторых веществ при помещении их в магнитное поле. В достаточно сильных магнитных полях возникает анизотропия, появляется двойное лучепреломление. В этом случае среда ведет себя как оптически одноосный кристалл, ось которого совпадает по направлению с вектором напряженности магнитного поля H. Возникающая разность показателей преломления для необыкновенного и обыкновенного лучей монохроматического света при его распространении в направлении, перпендикулярном вектору Н, и пропорциональна квадрату напряженности поля Н:
nе – no = Cλ0 H2
где C – постоянная Коттона–Мутона, зависящая от природы вещества, длины волны λ0 и
температуры.
Линейный электрооптический эффект Поккельса – явление изменения двойного лучепреломления вещества из-за смещения собственной частоты во внешнем электрическом поле:
nе – no = αE.
В отличие от эффекта Керра электрооптический эффект Поккельса пропорционален напряженности электрического поля.