Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VseOtvety_xe_33__33__33__33.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
847.54 Кб
Скачать

31.Поясните суть гипотезы Луи де Бройля. Как и кем она была экспериментально подтверждена, какое значение для естествознания имеет использование корпускулярно-волновых свойств вещества?

В своей гипотезе де Бройль исходил из аналогий, основанных на идее единства природы. Если эта идея справедлива, то можно ожидать волнового явления и для частиц вещества, например, дифракции электронов.

Идея де Бройля была неожиданна и открывала новые свойства вещества, о которых и не подозревали. Через оптико-механическую аналогию Бройль хотел вскрыть таинственный смысл квантовых условий, введенных в элементарной теории атома Бором, Вильсоном и Зоммерфельдом. Конкретный смысл связи между величинами, характеризующими частицу и волну, сопоставляемую с частицей, связан с квантованием энергии тела, определяемой по формуле ЭйнштейнаЕ= тс2и преобразованиями теории относительности.

Длину волны микрочастицы де Бройль определил по аналогии с длиной волны фотона. Поскольку импульс фотона ,

то длина его волны . По определению, импульс есть произведение массы на скорость, поэтому можно ввести длину волны де Бройля . Если электрон есть волна — частица, то стационарная орбита в атоме Бора будет определяться тем, что на ней должно укладываться целое число длин волн электрона. Это означает, что или через длину волны де Бройля можно записать: .

Явление дифракции электронов совершенно независимо открыл примерно в это же время Дж. П.Томсон, сын Дж.Дж.Томсона, при рассеянии быстрых электронов через металлическую фольгу. По дифракционным картинам он вычислил длину волны для электронов (аналогичный опыт по дифракции медленных электронов провел в 1932 г. П. С.Тартаковский). Так был экспериментально подтвержден корпускулярно-волновoй дуализм электронов.

32.Какие существуют методы управления химическими процессами? Как можно сместить химическое равновесие и направление реакции?

Исследования общих закономерностей, управляющих химическими процессами, заинтересовали возникшую в конце XIX в. химическую индустрию. Если какое-то вещество является катализатором, или ингибитором, происходит целый комплекс реакций, участвуют все вещества, оказавшиеся в зоне реакции, и могут получиться различные побочные продукты. От знания скорости и направления реакций, влияния на них различных факторов зависела производительность химической промышленности. Определение характера химического процесса казалось почти невозможным, пока не создали химическую термодинамику и кинетику.

При термодинамическом подходе управление ходом реакции осуществляется изменением термодинамических параметров системы — температуры, давления, концентрации.

Этими параметрами можно сместить направление реакции. Но термодинамический подход не дает изменения скорости реакции, так как время не входит в уравнения. Поэтому сведения о скорости дает только кинетика.

Вант-Гофф ввел в теорию принятый сейчас термин «концентрация». Изменяя концентрации, можно менять скорость и направление реакции, т.е. управлять процессом.

Д.П.Коновалов положил начало физико-химической теории катализа, ввел понятие активной поверхности (1885) и вывел формулу для скорости автокаталитических реакций независимо от С. Оствальда. Теорией катализа занимался и Д. И. Менделеев (1886). При катализе происходит активация молекул реагента при контакте с катализатором: связи в веществе становятся более подвижными, «подталкивая» вещества к взаимодействию.

Управлять ходом химической реакции можно и за счет привлечения внешнего источника энергии — световой или тепловой. С ее помощью удается расшатать атомы в исходной молекуле и побудить их к участию в нужной реакции. Этим занимается область химии, получившая название химии экстремальных состояний. Использованием для этой цели более жесткого электромагнитного излучения (для молекул с крепкими внутримолекулярными связями) занимается радиационная химия.

ЛеШателье выдвинул принцип подвижного равновесия (1884). Сейчас его формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление результатов такого влияния. Появилась возможность смещать равновесие в сторону образования продуктов реакции через изменение температуры, давления и концентрации реагентов. Эти методы назвали термодинамическими.

33.Как изменился политический климат в мире после появления атомного оружия? После запуска первого искусственного спутника Земли?

Спутник-1 — первый искусственный спутник Земли, был запущен на орбиту в СССР 4 октября 1957 года.

Кодовое обозначение спутника — ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (получившего впоследствии открытое наименование космодромБайконур), на ракете-носителе «Спутник» (Р-7).

Над созданием искусственного спутника Земли, во главе с основоположником практической космонавтики С. П. Королёвым, работали ученые М. В. КелдышМ. К. ТихонравовН. С. Лидоренко, В. И. Лапко, Б. С. Чекунов, А. В. Бухтияров и многие другие.

Дата запуска считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

34.. Как при описании состояния микрочастицы осуществляется синтез волновых и корпускулярных свойств?

Синтез корпускулярных и волновых представлений предложил в 1924 г. молодой французский физик Луи Виктор де Бройль, приписав любой частице некий внутренний периодический процесс и

рассмотрев единым образом частицы вещества и света. Он развил представления Эйнштейна о двойственной природе света, распространив их на вещество. Для этого он объединил формулу ПланкаЕ= hvи формулу Эйнштейна Е = тс2и получил соотношение, показывающее, что любой частице при определенных массе и скорости соответствует своя длина волны. Сама волна не несет энергию, а только отображает «распределение фаз» некоего периодического процесса в пространстве. Эту фиктивную волну де Бройль назвал «фазовой волной», форма лучей которой определяется принципом наименьшего времени распространения, выдвинутого еще Ферма.

Вслед за Гамильтоном де Бройль сравнил принцип Ферма в оптике с принципом наименьшего действия в классической механике и пришел к выводу, что объединение этих экстремальных принципов должно стать основой объединения волновых и корпускулярных представлений, синтеза волн и квантов. Гамильтон подчеркивал, что дело не в том, чтобы представить себе свет как поток частиц или как волну, а в том, чтобы создать теорию, согласующуюся с опытом. Установив математическую тождественность проблем геометрической оптики и механики, он вообще игнорировал вопрос о природе света, но его оптико-механическая аналогия была началом сопоставления прерывности и непрерывности, «частицы» и «волны».

Бройль пошел дальше не только Гамильтона, но и Планка, и Эйнштейна. Соотношения Эйнштейна для световых квантов в объяснении фотоэффекта требуют сохранения

понятия частоты, поэтому сохраняются и волновые свойства света как колебательного процесса, т. е. в свойствах света присутствует двойственность. В своей гипотезе де Бройль исходил из аналогий, основанных на идее единства природы. Эйнштейн сразу понял, что здесь речь идет не просто об аналогии света и вещества. Если эта идея справедлива, то можно ожидать волнового явления и для частиц вещества, например, дифракции электронов.

Идея де Бройля была неожиданна и открывала новые свойства вещества, о которых и не подозревали. Через оптико-механическую аналогию Бройль хотел вскрыть таинственный смысл квантовых условий, введенных в элементарной теории атома Бором, Вильсоном и Зоммерфельдом. Конкретный смысл связи между величинами, характеризующими частицу и волну, сопоставляемую с частицей, связан с квантованием энергии тела, определяемой по формуле ЭйнштейнаЕ= тс2и преобразованиями теории относительности.

Длину волны микрочастицы де Бройль определил по аналогии с длиной волны фотона. Поскольку импульс фотона ,

то длина его волны . По определению, импульс есть произведение массы на скорость, поэтому можно ввести длину волны де Бройля . Если электрон есть волна — частица, то стационарная орбита в атоме Бора будет определяться тем, что на ней должно укладываться целое число длин волн электрона. Это означает, что или через длину волны де Бройля можно

записать: . Это и есть первый постулат теории атома

Бора.

Оценим длину волны электрона с энергией 10 эВ. Так какЕ =

10-10 м = 0,388 нм. Полученное значение длины волны сравнимо с размером атома и вместо орбит Бора ныне говорят об орбита-лях.

В 1921 г. американский физик К.Дж.Дэвиссон обнаружил, что электроны, отражаясь от никелевой пластинки, рассеиваются под определенным углом. Тогда он не сумел найти подходящего объяснения этому явлению. Но после появления работ Луи де Бройля он провел дополнительное исследование и в 1927 г. вместе с американским физиком Л.Джермером получил четкую картину рассеяния электронов, соответствующую проявлению волновых свойств, как и предсказывал де Бройль (1 эВ = 1,6 • 10-19 Дж).

Явление дифракции электронов совершенно независимо открыл примерно в это же время Дж. П.Томсон, сын Дж.Дж.Томсона, при рассеянии быстрых электронов через металлическую фольгу. По дифракционным картинам он вычислил длину волны для электронов (аналогичный опыт по дифракции медленных электронов провел в 1932 г. П. С.Тартаковский). Так был экспериментально подтвержден корпускулярно-волновoй дуализм электронов.

В 1949 г. советские ученые (Л. А. Биберман, В. А. Фабрикант, С. А. Сушков) зафиксировали дифракционные картины, полученные от очень слабых потоков электронов. Фактически от каждого из них.

После успешного обнаружения волновых свойств у электронов были проведены сложнейшие опыты по их обнаружению у атомов и молекул (Германия). Так как длина волны де Бройля равна ,

то у больших частиц она существенно меньше, но Штерн ее измерил. Впоследствии дифракционные, а значит, и волновые свойства были обнаружены у атомных и молекулярных пучков.

35.Происхождение и эволюция видов с точки зрения генетики. Что такое “мутация”, какие мутации бывают, какова роль мутаций и окружающей среды в эволюции живого? Как определить, что приобретенные признаки не наследуются?

К. Линней считал, что близкие виды внутри рода могли развиться естественным образом без участия высших сил. Эволюционные представления были характерны для К.Вольфа, М.В.Ломоносова и А. Н. Радищева. Ломоносов считал изменения в неживой природе причиной изменений мира живого, по останкам вымерших форм судил об условиях существования их в далекие времена. Он писал, что время, необходимое для создания организмов, больше, чем определяется церковным исчислением. Но эти идеи формировали пока только представление о последовательности природных тел. Ограниченную трансформацию видов допускал Ж. Бюффон, считая, что разные типы животных имеют разное происхождение и возникли в разное время. Эта концепция обобщала многие наблюдения и факты, выделяла идею глубокой взаимосвязи между видами, подвидами, родами и другими таксонами, подготавливая почву для эволюционизма. Так, до конца XVIII в. господствовала мысль о «целесообразности порядков в природе» (сотворении кошек для пожирания мышей и т.п.). Постепенно возникал вопрос о возникновении такой целесообразности. Общество не могло еще воспринять идеи эволюции, так как обсуждались не доступные для проверки масштабы времен.

Идею эволюции живого перевел на уровень теории эволюции Ж. -Б. Ламарк. Он считал, что Бог сотворил материю и движение, а далее развитие происходило по естественным причинам. Опираясь на многочисленные факты изменяемости видов, Ламарк в книге «Философия зоологии» (1809) выдвинул гипотезу о механизме эволюции, основанном на двух предпосылках: наследование приобретенных признаков и упражнение или неупражнениечастей организма. Он представил эволюционное обоснование «лестницы существ», основанное на принципах градации (внутреннего стремления к совершенству) и изначальной целесообразности реакции организма на изменения внешней среды (признание возможности прямого приспособления). Далее Ламарк формулировал два закона: 1 — изменение привычек следует сразу за изменением условий и 2 — эти изменения передаются по наследству. Основа эволюции — врожденная способность к самосовершенствованию, фактор явно нематериальный: «творить может только Бог, тогда как природа может только производить», а изменения во внешней среде могут изменить формы поведения, поэтому органы или структуры способны приобрести новые функции, а эти новые функции органов и изменения в них могут быть переданы потомкам. Так вытянулась шея у жирафа, увеличились перепонки у водоплавающих, развивается мускулатура при занятиях спортом. Эта часть учения Ламарка отвергалась, как противоречащая появляющимся новым знаниям о механизме наследования, для нее еще не пришло время. Большую роль в возникновении новых видов Ламарк отводил переменам климата и гидрогеологического режима. Политические страсти внутри биологии скомпрометировали важность идей типа «наследуется все благоприобретенное» (она получила название «ламаркизм»). Как подчеркивал К.А.Тимирязев, Ламарк не сумел объяснить целесообразность организмов. Но «роль Ламарка в биологии колоссальна», — отметил современный генетик Л. Н. Серавин (1994).

Предшественником идей Дарвина в России был зоолог К. Ф. Ру-лье, развивавший идеи возникновения органического мира из неорганического. Он выделял наследственность и изменчивость в качестве основных свойств организмов, говорил и о постепенном изменении организмов под влиянием внешних условий.

Мутации — фактор случайный, подчиняющийся статистическим законам. Поэтому они, как и перестройки генов, и волны численности популяции, не могут быть решающим фактором эволюции.

Генные мутации — главная причина возникновения новых наследственных свойств. Они и есть основные предпосылки эволюции, постоянно действующий источник наследственной изменчивости. Мутация может быть рецессивной, доминантной и полудоминантной в зависимости от состояния гена, в котором она произошла. Гены мутируют с определенной частотой, и природные популяции насыщены самыми разнообразными мутациями из-за одновременных мутаций многих генов.

Рецессивные мутации могут накапливаться в генофондах популяций, составляя резерв наследственной изменчивости. Классические работы Четверикова связали закономерности отбора в популяциях с динамикой процесса эволюции. На нескольких видах мушек дрозофил он показал, что в каждой популяции есть большое количество разных рецессивных мутантных генов. Эти гены не выявляются в признаках организма, так как подавлены нормальными доминантными аллелями, но могут проявиться в случае, когда встретятся и оставят потомство две особи с одним и тем же рецессивным мутантным геном. Так колебания частоты генов в популяциях связаны с внешними условиями среды.

Этот закон Четверикова был многократно проверен и на других объектах, породив мнение, что наличие таких рецессивных мутантных генов является предпосылкой эволюции. Но важно, чтобы эти особи не имели дефектов, мешающих нормальной работе организма, и обладали какими-то преимуществами перед другими. Так, при близкородственном скрещивании (инбридинг) потомство оказывается гомозиготным не только по этому мутантному гену, но и по большим отрезкам хромосом, что не способствует эволюции.

Основную роль должны играть доминантные мутации, считает Гершенсон, а рецессивные — могут изредка поддерживаться отбором, хотя у дрозофил численность рецессивных мутант-ных генов велика, но частота каждого мала (порядка сотых долей процента). Такой случайный спектр рецессивных мутаций свидетельствует о ненаправленном характере мутационного процесса в популяции. Доминантные же мутации почти все принадлежат к очень ограниченному числу типов и вызывают лишь несколько определенных небольших изменений в структуре жилок крыльев, числе и расположении щетинок. В популяциях их доля около 15 %, сохраняющаяся из года в год. Отсюда и предположение о действии естественного отбора, обеспечивающего и сохранность типов.

Мутации как бы нащупывают экологические условия, способствующие выживанию и размножению особей с данной мутацией. Одновременно идет отбор генотипов, в которых она наиболее благоприятна. Важно ее влияние и на норму реакции организма. Так, мутантный признак закрепляется в наиболее подходящих местах, где мутанты становятся постоянной частью природной популяции. Затем на стадии сосуществования мутантов с немутантами происходит приспособление популяции к более эффективному использованию среды обитания. При этом эволюционная пластичность популяции высока и позволяет быстро перестроиться при стойких изменениях среды. Появившаяся мутация может повысить адаптивные свойства организма, тогда можно говорить о третьем этапе, о появлении нового экотипа. И если какой-нибудь из этих экотипов окажется в изоляции от других популяций вида, то начнет образовываться новая разновидность, способная стать и новым видом. Эта схема сильно упрощена, не учтено множество факторов, могущих повлиять на процесс, в том числе и недавно открытых, — перемещения гена в пределах генома, умножение числа какого-то гена в геноме и т. п. В контексте геологических времен видообразование — процесс почти мгновенный, интервал от позднего докембрия до современности, равный примерно 700 млн лет, за который сложилась современная жизнь, безусловно, мал для развития ее без скачков.

Принцип Харди — Вайнберга — без внешних давлений частоты генов в популяции постоянны (1908) — служил первым существенным шагом к объединению дарвинизма и генетики. Этот закон означает, что накопленные изменения в генофонде не исчезают бесследно. Исходя из него и учитывая влияние отбора и возникновение новых мутаций, С.С.Четвериков показал, что из-за постоянных мутаций во всех популяциях создается существенная наследственная гетерогенность, что отбору подвергаются не отдельные особи и виды, а генотип популяции. С работы С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) наступил период синтеза представлений. Мутации — основа эволюции, они перерабатываются естественным отбором. Исследования конца 20-х гг. XX в. показали, что большую роль в эволюции играет не только появление новых мутаций, но и изменение частоты встречаемости существующих аллелей (гена) из-за случайных процессов — колебания численности популяций и пр. (Р.А. Фишер, Н. П.Дубинин, Д.Д. Ромашов, С.Райт и др.). При резком снижении численности популяций (в связи с ростом близкородственных скрещиваний) снижается наследственная изменчивость. По Райту — это «дрейф генов», а по Дубинину — «генетико-автоматический процесс». Другим проявлением «волн жизни» является изменение концентрации различных мутаций и уменьшение разнообразия генотипов популяции. Они могут привести к изменениям направленности и интенсивности действия отбора.

Генетика позволила проследить протекание эволюционного процесса от появления первого признака в популяции до возникновения нового вида. При исследованиях на микроэволюционном (внутривидовом) уровне применялись точные экспериментальные методы. И пришли к элементарной единице эволюции — популяции, элементарном эволюционном материале и явлении. Учение о микроэволюции сформулировали Ф.Г.Добржанский и Н.В.Тимофеев-Ресовский (1939). Современная теория не только добавила к дарвиновской «триаде» новые факторы эволюции, но и основные факторы переосмыслила иначе. Сейчас к ведущим факторам эволюции относят мутации, популяционные волны численности и изоляцию. Возникла и глобальная цель — управление процессом эволюции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]