- •Развитие естествознания и стимулы развития науки.
- •Понятие научная революция.
- •Научные революции прошлого столетия.
- •Основные достижения нтр.
- •Особенности нтр.
- •Элементы научного метода познания.
- •Методы естествознания,всеобщность его законов,отличия естествознания от других наук.
- •Системный подход и его основные понятия в современной естественнонаучной картине мира.Примеры применения.
- •Представления о материи и движении.
- •Механическая картина мира.
- •Изменение представлений о времени и пространстве в ходе развития науки.
- •Относительность одновременности,расстояний и промежутков времени.
- •Принцип относительности и постулаты Эйнштейна.
- •Симметрии пространства и времени и законы сохранения.
- •Примеры сохраняющихся велечин в окружающей жизни,наприме в спорте.
- •Поясните роль математики и моделирования в естествознании.
- •Принцип соответствия (классическая и релятивистская механика).
- •Начала термодинамики,связь термодинамических и статистических свойств макроскопических систем.
- •Проанализируйте понятие температура с позиций этой связи.
- •11. . Понятие энтропии. Основные отличия реальных процессов от идеальных. Принцип Больцмана, связь понятий “энтропия” и “информация”. Проблема обратимости.
- •12.. Единство дискретности и непрерывности в теории излучения. Волновые и корпускулярные свойства света. Корпускулярно-волновой дуализм материи
- •13. Несостоятельность механического детерминизма. Понятие состояния в классической и квантовой теориях. Фундаментальность статистического описания.
- •14. Соотношения неопределенности и принцип дополнительности. Принцип соответствия и специфика описания микромира. Поясните роль прибора в квантовой механике.
- •16. Понятие «химический элемент», «валентность» и « химическая связь». Роль энергии и энтропии при образовании молекул. Представления о структурной и квантовой химии.
- •17. Основные формы, свойства и уровни организации живой материи. Молекулярно-генетический уровень.
- •18. Понятие “биосфера”, ее функции и оболочки. Процесс фотосинтеза. Основы учения Вернадского о биосфере. Круговорот веществ в биосфере. Распределение на Земле солнечной энергии.
- •Основные факторы эволюции по Дарвину
- •21. Основные концепции происхождения жизни. Концепции биохимической эволюции. Возникновение и эволюция океана и атмосферы. Возникновение биосферы, химическая эволюция преджизненных форм
- •23. Понятия «динамический хаос», «аттрактор», «фрактал» и «бифуркация». Условия образования упорядоченных структур из хаоса, примеры. Синергетика.
- •Самоорганизация материи в процессе эволюции галактик, звезд, планет
- •25. Феномен человека. Антропный принцип. Человек как качественно новая ступень развития биосферы. Понятие о социальной экологии, этологии и социобиологии.
- •Практическое задание 1
- •31.Поясните суть гипотезы Луи де Бройля. Как и кем она была экспериментально подтверждена, какое значение для естествознания имеет использование корпускулярно-волновых свойств вещества?
- •32.Какие существуют методы управления химическими процессами? Как можно сместить химическое равновесие и направление реакции?
- •36 Как связаны энергетическая прочность химической связи со структурой молекулы? Приведите примеры изомеров.
- •47) Что такое «календарь»? Какие движения Земли легли в основу календаря, какие календари используются сейчас? Будет ли на Земле смена дня и ночи, если прекратится ее вращение вокруг своей оси?
- •48)Древнегреческий ученый Демокрит 2,5 тысячи лет назад считал, что все тела состоят из мельчайших частиц – атомов. Почему эти представления, несмотря на правильность, не могут считаться научными?
- •Практическое задание 2 (задачи)
Практическое задание 1
26.В каких явлениях проявляются корпускулярные свойства света? Поясните смысл понятия «фотон». Какие явления, и каким образом были объяснены с помощью квантовой теории света? Почему в объяснении фотоэффекта существование пороговой частоты говорит пользу фотонной, а не волновой теории?
В фотоэффекте и эффекте Комптона. Фотон (от греч. phos, родительный падеж photós – свет), элементарная частица, квант электромагнитного излучения (в узком смысле – света). Масса покоя m0 Ф. равна нулю (из опытных данных следует, что во всяком случае m0 (4×10-21mе, где mе – масса электрона), и поэтому его скорость равна скорости света с " 3×1010 см/сек.
Согласно квантовой теории свет представляет поток своеобразных частиц материи, так называемых квантов, или фотонов. Эйнштейн доказал, что фотоны обладают не только некоторой энергией, которую они уносят от светящегося тела, но и (соответственно этой энергии) некоторой массой, а значит и весом, как это вытекало из новой теории тяготения, установленной Эйнштейном на основе теории относительности3.
27. Поясните структуру молекулы воды и особенности растворения в воде различных веществ. Какую роль играют гидрофильные и гидрофобные процессы в живых организмах?
Уникальные свойства воды объясняются структурой её молекул: атом кислорода связан ковалентно с двумя атомами водорода, молекула изогнута под углом, в вершине которого и находится кислород. Из-за того, что кислород притягивает электроны сильнее, чем водород, молекула воды всегда полярна: кислород частично заряжен отрицательно, водород — положительно, поэтому молекула воды удерживается водородными связями. Когда вода находится в жидкой фазе, эти слабые связи легко рвутся и разрушаются при столкновениях молекул, тем не менее водородные связи играют большую роль, обеспечивая особое значение воды для жизни
Вода является хорошим растворителем. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания). Хорошо растворяются в воде и некоторые неионные, но полярные соединения, т. е. в молекуле которых присутствуют заряженные (полярные) группы, например сахара, простые спирты, аминокислоты. Вещества, хорошо растворимые в воде, называются гидрофильными (от греч. hygros— влажный и philia — дружба, склонность). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает. Это объясняет, почему вода является основной средой, в которой протекает большинство химических реакций, а все реакции гидролиза и многочисленные окислительно-восстановительные реакции идут при непосредственном участии воды. Вещества, плохо или вовсе нерастворимые в воде, называются гидрофобными (от греч.phobos — страх). К ним относятся жиры, нуклеиновые кислоты, некоторые белки. Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет неполярные вещества, для живых организмов также очень важен. К числу важных в физиологическом отношении свойств воды относится ее способность растворять газы (О2, С и др.).
По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.
Гидрофильными (от греч. hidor - вода и fileo - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).
Гидрофобными (от греч. hidor - вода и fobos - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.
Когда вещество переходит в раствор, его молекулы или ионы могут более свободно двигаться, и реакционная способность возрастает. Большая часть реакций в клетке идет в водном растворе. Такие гидрофильные свойства полярных молекул важны в обеспечении стабильности мембран, белковых молекул, нуклеиновых кислот и других субклеточных структур. Неполярные вещества, такие как липиды, с водой не смешиваются и разделяют водные растворы на отдельные компоненты, как их разделяют мембраны. Поэтому неполярные части молекул водой отталкиваются и в присутствии воды притягиваются друг к другу, или обладают гидрофобным эффектом, например, сливание капелек масла в большую каплю и нерастворение ее в воде. Свойство воды — растворителя важно для транспортировки по организму разных веществ (это происходит в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений).
28. Какие особенности строения атома углерода определили его роль в живой природе? Поясните роль каталитических реакций в жизнедеятельности организмов, роль аналогии между катализаторами и ферментами.
Уникальная роль Углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один других элемент периодической системы. Между атомами Углерода, а также между Углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность Углерода образовывать 4 равнозначные валентные связи с других атомами Углерода создает возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О и Н - составляют 98% общей массы живых организмов. Этим достигается определенная экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома Углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).
ФЕРМЕ́НТЫ (от лат. «fermentum» — брожение, закваска), энзимы, специфические белки, увеличивающие скорость протекания химических реакций в клетках всех живых организмов. По химической природе — белки, обладающие оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов и отсутствии ингибиторов. Ферменты называют также биокатализаторами по аналогии с катализаторами в химии. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926).
Каталитические свойства ферментов Ферменты — самые активные среди всех известных катализаторов. Большинство реакций в клетке протекает в миллионы и миллиарды раз быстрее, чем если бы они протекали в отсутствие ферментов. Так, одна молекула фермента каталазы способна за секунду превратить в воду и кислород до 10 тыс. молекул токсичной для клеток перекиси водорода, образующейся при окислении различных соединений. Каталитические свойства ферментов обусловлены их способностью существенно уменьшать энергию активации вступающих в реакцию соединений, то есть в присутствии ферментов требуется меньше энергии для «запуска» данной реакции.
29. Поясните понятия «химический элемент» и «химическое соединение». По каким признакам была построена Периодическая система элементов? Какие химические элементы названы по именам частей света? государств и их столиц?
Химический элемент — определенный вид атомов с одинаковым положительным зарядом ядра. Хими́ческоесоедине́ние — сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов.ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ (таблица Менделеева) — классификация химических элементов, позволяющая наглядно показать зависимость многих химических свойств элементов от числа протонов в атомном ядре.В периодической системе по горизонтали имеется 7 периодов, из них первые три называются малыми, а остальные — большими. В первом периоде находится 2 элемента, во втором и третьем — по 8, в четвертом и пятом — по 18, в шестом — 32, в седьмом (незавершенном) — 21 элемент. Каждый период, за исключением первого” начинается щелочным металлом и заканчивается благородным газом (7-й период — незаконченный).Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами.Основным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Например, в четвертом периоде степени окисления элементов от К до Mn изменяются от +1 до +7, затем следует триада Fe, Со, Ni (это элементы четного ряда), после чего наблюдается такое же возрастание степеней окисления у элементов от Cu до Br (это элементы нечетного ряда). То же мы видим в остальных больших периодах, исключая седьмой, который состоит из одного (четного) ряда. Дважды повторяются в больших периодах и формы соединений элементов. Германий, франций, полоний(Польша), рутений(Россия), галлий(Франция).Имена учёных физиков и химиков:кюрий, эйнштейний, менделевий, нобелий, резерфордий, сиборгий, борий и т.д.
30. Почему система мира Коперника (гелиоцентрическая), в основных чертах повторяющая систему Аристарха Самосского, в отличие от последней не была отвергнута учеными?
Гелиоцентрическая система мира — представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты. Противоположность геоцентрической системе мира. Возникло в античности, но получило широкое распространение с конца эпохи Возрождения.В этой системе Земля предполагается обращающейся вокруг Солнца за один звёздный год и вокруг своей оси за одни звёздные сутки. Следствием второго движения является видимое вращение небесной сферы, первого — перемещение Солнца среди звёзд по эклиптике. Солнце считается неподвижным относительно звёзд.
Гелиоцентрическая система отсчета — это просто система отсчета, где начало координат размещено в Солнце. Гелиоцентрическая система мира — это представление об устройстве мироздания. В узком смысле этого слова, оно заключается в том, что Вселенная ограниченна, Солнце расположено в её центре, а Земля совершает два вида движения: поступательное вокруг Солнца и вращательное вокруг оси; звезды неподвижны относительно Солнца. Термин «гелиоцентрическая система мира» часто используется в более широком смысле слова, когда Вселенная считается неограниченной и не имеющей центра. Тогда смысл этого термина заключается в том, что звезды неподвижны относительно Солнца, т.е. Солнце хотя бы с кинематической точки зрения является одной из звезд. Гелиоцентрическую систему мира можно рассматривать в какой угодно системе отсчета, в том числе геоцентрической, в которой Земля выбирается в качестве начала координат. В этой системе отсчета Земля неподвижна и Солнце вращается вокруг Земли, но система мира все равно остается гелиоцентрической, поскольку взаимная конфигурация Солнца и звезд остается неизменной. Наоборот, даже если рассматривать геоцентрическую систему мира в гелиоцентрической системе отсчета, она по прежнему будет геоцентрической системой мира, поскольку звезды будут совершать в ней движение с периодом в один год.
