- •Развитие естествознания и стимулы развития науки.
- •Понятие научная революция.
- •Научные революции прошлого столетия.
- •Основные достижения нтр.
- •Особенности нтр.
- •Элементы научного метода познания.
- •Методы естествознания,всеобщность его законов,отличия естествознания от других наук.
- •Системный подход и его основные понятия в современной естественнонаучной картине мира.Примеры применения.
- •Представления о материи и движении.
- •Механическая картина мира.
- •Изменение представлений о времени и пространстве в ходе развития науки.
- •Относительность одновременности,расстояний и промежутков времени.
- •Принцип относительности и постулаты Эйнштейна.
- •Симметрии пространства и времени и законы сохранения.
- •Примеры сохраняющихся велечин в окружающей жизни,наприме в спорте.
- •Поясните роль математики и моделирования в естествознании.
- •Принцип соответствия (классическая и релятивистская механика).
- •Начала термодинамики,связь термодинамических и статистических свойств макроскопических систем.
- •Проанализируйте понятие температура с позиций этой связи.
- •11. . Понятие энтропии. Основные отличия реальных процессов от идеальных. Принцип Больцмана, связь понятий “энтропия” и “информация”. Проблема обратимости.
- •12.. Единство дискретности и непрерывности в теории излучения. Волновые и корпускулярные свойства света. Корпускулярно-волновой дуализм материи
- •13. Несостоятельность механического детерминизма. Понятие состояния в классической и квантовой теориях. Фундаментальность статистического описания.
- •14. Соотношения неопределенности и принцип дополнительности. Принцип соответствия и специфика описания микромира. Поясните роль прибора в квантовой механике.
- •16. Понятие «химический элемент», «валентность» и « химическая связь». Роль энергии и энтропии при образовании молекул. Представления о структурной и квантовой химии.
- •17. Основные формы, свойства и уровни организации живой материи. Молекулярно-генетический уровень.
- •18. Понятие “биосфера”, ее функции и оболочки. Процесс фотосинтеза. Основы учения Вернадского о биосфере. Круговорот веществ в биосфере. Распределение на Земле солнечной энергии.
- •Основные факторы эволюции по Дарвину
- •21. Основные концепции происхождения жизни. Концепции биохимической эволюции. Возникновение и эволюция океана и атмосферы. Возникновение биосферы, химическая эволюция преджизненных форм
- •23. Понятия «динамический хаос», «аттрактор», «фрактал» и «бифуркация». Условия образования упорядоченных структур из хаоса, примеры. Синергетика.
- •Самоорганизация материи в процессе эволюции галактик, звезд, планет
- •25. Феномен человека. Антропный принцип. Человек как качественно новая ступень развития биосферы. Понятие о социальной экологии, этологии и социобиологии.
- •Практическое задание 1
- •31.Поясните суть гипотезы Луи де Бройля. Как и кем она была экспериментально подтверждена, какое значение для естествознания имеет использование корпускулярно-волновых свойств вещества?
- •32.Какие существуют методы управления химическими процессами? Как можно сместить химическое равновесие и направление реакции?
- •36 Как связаны энергетическая прочность химической связи со структурой молекулы? Приведите примеры изомеров.
- •47) Что такое «календарь»? Какие движения Земли легли в основу календаря, какие календари используются сейчас? Будет ли на Земле смена дня и ночи, если прекратится ее вращение вокруг своей оси?
- •48)Древнегреческий ученый Демокрит 2,5 тысячи лет назад считал, что все тела состоят из мельчайших частиц – атомов. Почему эти представления, несмотря на правильность, не могут считаться научными?
- •Практическое задание 2 (задачи)
23. Понятия «динамический хаос», «аттрактор», «фрактал» и «бифуркация». Условия образования упорядоченных структур из хаоса, примеры. Синергетика.
Динамическим хаосом называется хаотическое, непредсказуемое изменение состояния системы от времени.
Аттрактор - совокупность внутренних и внешних условий, способствующих " выбору " самоорганизующейся системой одного из вариантов устойчивого развития; идеальное конечное состояние , к которому стремится система в своем развитии. Пространство внутри аттрактора , в котором каждая частица (система), туда попавшая, постепенно смещается в заданном направлении, называют "зоной аттрактора".
В синергетической методологии различают простые и странные аттракторы. При состояниях системы, определяемых простым аттрактором, траектория развития системы является предсказуемой. При состояниях системы, определяемых странным аттрактором, "становится невозможным определить положение частиц (их поведение ) в каждый данный момент , хотя мы и уверены, что они находятся в зоне аттрактора. Фазовый портрет странного аттрактора - это не точка и не предельный цикл, а некоторая область, по которой происходят случайные блуждания.
Фракталы (дробный, самоподобный) - объекты, проявляющие по мере увеличения все большее число деталей. Вид этих деталей подобен форме самого объекта и сами они состоят из подобных себе структур.
Точки перехода от одного характера динамики к другому – бифуркации.
Условия образования упорядоченных структур из хаоса, примеры, синергетика
Условия:
1. Для этого система должна быть открытой, и от точки термодинамического равновесия. По мнению Стенгерс, большинство систем открыты -- они обмениваются энергией, веществом информацией с окружающей средой. Главенствующую роль в окружающем мире играет не порядок, стабильность и равновесие, а неустойчивость и неравновестность, от есть непрерывно флуктуируют.
2. Фундаментальным условием самоорганизации служит возникновение и усиление порядка через флуктуации.
3. В особой точке бифуркации флуктуация достигает такой силы, что организации системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотичным или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. В точке бифуркации система может начать развитие в новом направлении, изменить свое поведение. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее дальнейшего развития. Примером бифуркаций могут служить «выбор спутника жизни», '' ситуации выбора учебного заведения». Наглядный образ бифуркации дает картина В. М. Васнецова «Рыцарь на распутье».
4. Новые структуры, возникающие в результате эффекта взаимодействия многих систем, называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых, на смену которым они приходят. В точке бифуркации система встает на новый путь развития. Те траектории или направления, по которым возможно развитие системы после точки бифуркации и которое отличается от других относительной устойчивостью, иными словами, является более реальным, называется аттрактором. Аттрактор- это относительно устойчивое состояние системы, притягивающее к себе множество «линий» развития, возможных после точки бифуркации. Случайность и необходимость взаимно дополняют друга в процессе возникновения нового.
5. Диссипативные структуры существуют лишь постольку, поскольку система рассеивает энергию, а, следовательно производит энтропию. Из энтропии возникает порядок с увеличением общей энтропии. Таким образом, энтропия не просто соскальзыванием системы к дезорганизации, она становится прародительницей порядка, нового. Так из хаоса (неустойчивости) в соответствии с определенной информационной матрицей рождается Космос.
В качестве примеров организации порядка из хаоса в неживой природе можно привести авторегуляцию, принцип наименьшего действия и принцип Ле-Шателье. Было открыто самопроизвольное образование на Земле минералов с более сложной кристаллической решеткой. В химии известны процессы, приводящие к образованию устойчивых структур во времени. Примером является реакция Белоусова-Жаботинского, где раствор периодически меняет свой цвет от красного к синему в зависимости от концентрации соответствующих ионов.
В физике явления самоорганизации встречаются от атомных объектов и кончая галактическими системами. Появление лазера - организация порядка из хаоса. Атомы, внедренные в лазер, могут возбуждаться действием энергии извне, например, путем освещения. Если внешняя энергия недостаточна, лазер работает как радиолампа. Когда же она достигает мощности лазерной генерации, атомы, ранее испускавшие волны хаотично и независимо, начинает излучать один громадный цуг волн длиной около 300 000 км. Выделяя при этом очень большую энергию, передаваемую на большие расстояния. Атомная антенна начинает резонировать, все атомы начинают излучать согласованно, и волны совершают как бы одно коллективное движение.
Биологические и социальные системы поддерживают упорядоченные состояния, несмотря на возмущающие влияния окружающей среды.
Синергетика - наука о сложном, о том, как в хаосе устанавливается определенный порядок, который, однако, рано или поздно разрушается.и ставящая в качестве своей основной задачи познание общих закономерностей и принципов, лежащих в основе процессов самоорганизации в системах самой разной природы: физических, химических, биологических технических, экономических, социальных.
Под самоорганизацией в синергетике понимаются процессы возникновения макроскопически упорядоченных пространственно временных структур в сложных нелинейных системах. Система под воздействием самых незначительных воздействии, или флуктуации, может резко изменить свое состояние. Этот переход часто характеризуют как возникновение порядка из хаоса.
Исходя из успехов синергетики ученые объясняют возникновение и развитие упорядоченных систем перестройкой хаоса. Все возникает из хаоса. Поскольку система «забывает» свои прошлые состояния, то неизвестно, что было до хаоса и в принципе это невозможно узнать.
Предмет же синергетики охватывает все этапы универсального процесса самоорганизации как процесса эволюции порядка - его возникновения, развития, самоусложнения и разрушения, т.е. весь цикл развития системы в аспекте ее структурного упорядочения. Иными словами, синергетику можно считать наиболее полной, интегральной теорией порядка и хаоса потому, что она исследует различные фазы (уровни) порядка и проявления различной роли хаоса на этих этапах порядкообразования.
24. Основные закономерности самоорганизации. Отражение процесса самоорганизации в иерархии структур Вселенной. Модели развития Вселенной. Самоорганизация материи в процессе эволюции галактик, звезд, планет.
Закономерности (характеристики) процесса самоорганизации:
интенсивный обмен энергией/веществом с окружающей средой, причём совершенно хаотически (не вызывая упорядочение в системе);
макроскопическое поведение системы описывается несколькими величинами — параметром порядка и управляющими параметрами (исчезает информационная перегруженность системы);
имеется некоторое критическое значение управляющего параметра (связанного с поступлением энергии/вещества), при котором система спонтанно переходит в новое упорядоченное состояние (переход к сильному неравновесию);
новое состояние обусловлено согласованным (когерентным) поведением элементов системы, эффект упорядочения обнаруживается только на макроскопическом уровне;
новое состояние существует только при безостановочном потоке энергии/вещества в систему. При увеличении интенсивности обмена система проходит через ряд следующих критических переходов; в результате структура усложняется вплоть до возникновения турбулентного хаос
Отражение процесса самоорганизации в иерархии структур вселенной
Распространение синергетики продолжилось на социологию, культурологию, науковедение и, наконец, на всю Вселенную [2-4,6]. Так синергетика стала наукой всех наук [6;13] и парадигмой эволюции Вселенной. В этой парадигме эволюция Вселенной обусловлена процессами самоорганизации, протекающими с уменьшением энтропии и с образованием новых, более сложных структур. При этом синергетика, признавая нашу Вселенную открытой системой, посчитала движущими силами ее эволюции случайность, неустойчивость, нелинейность и необратимость
Вывод: самоорганизация – это основной закон природы, это – механизм управления процессами, происходящими на всех уровнях иерархии Вселенной, направленный на образование новых более высокоорганизованных форм и структур, предусмотренных эволюцией. Этот механизм обеспечивается законами и силами, действующими на всех уровнях иерархии Вселенной. Все эти силы и законы, механизмы управления, заложенные в природе, не имеют смысла, если развитие Вселенной случайно, не имеет Высшей Цели и обеспечивающей ее Программы.
Модели развития Вселенной
В историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III веке до нашей эры предложил гелиоцентрическую систему, возрожденную польским священником Коперником в 1514 г. Сюда же можно отнести и античную систему Птоломея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и Кеплер (эллиптические орбиты вместо круговых) и Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII веке. Уже в это время (а идеи Джордано Бруно еще ранее - XVI век) возникли представления о бесконечной Вселенной. В XIX веке они развились в представления Платона о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна.
Предполагалось, что пространство - абсолютно, однородно и изотропно, а время - абсолютно и однородно, т.е. использовались строительные материалы классической механики и евклидовой геометрии. Это, кстати, устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном так и во временном понимании. Бог создал и все! Кстати, с материалистической точки зрения можно предположить, что Бог в теологии - это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на гуманитарном языке, можно сказать - оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла согласно [] как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в СТО и ОТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время - уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.
В настоящее время существует много космологических теорий, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов. Однако одна из современных таких теорий - теория Большого взрыва (BigBang) - смогла к настоящему времени объяснить почти все факты, связанные с космологией.
Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае игнорируется, когда и почему Вселенная начала расширяться, то есть теория Большого Взрыва — лишь частный случай модели расширяющейся Вселенной. В основе большинства моделей расширяющейся Вселенной лежит ОТО и её геометрический взгляд на природу гравитации. Изотропно расширяющуюся среду удобно рассматривать в системе координат, расширяющихся вместе с материей. Таким образом, расширение Вселенной формально сводится к изменению масштабного фактора всей координатной сетки, в узлах которой «посажены» галактики. Такую систему координат называют сопутствующей. Начало же отсчёта обычно прикрепляют к наблюдателю.
Теория Большого Взрыва (модель горячей Вселенной)
Эта теория отвечает на вопросы: «Существовала ли Вселенная вечно или она появилась из чего-то? А если была рождена, то как она развивалась в первые секунды своей жизни?» Экстраполяция наблюдаемого состояния Вселенной назад во времени при условии верности общей теории относительности приводит к неизбежному выводу, что за конечное время назад всё пространство Вселенной сворачивается в точку, космологическую сингулярность, называемую Большим Взрывом.
Главным аргументом, подтверждающим теорию горячей Вселенной, является величина её энтропии. Она с точностью до численного коэффициента равна отношению концентрации равновесных фотонов nγ к концентрации барионов nb.
Модель Фридмана
В рамках ОТО вся динамика Вселенной может быть сведена к простым дифференциальным уравнениям для масштабного фактора a(t) — величины отражающая изменение расстояний в однородно сжимающихся пространствах. Для подобной модели интервал между двумя событиями записывается следующим образом:
ds2 = c2dt2 − a2(t)dR2
где dR² описывает геометрические свойства пространства. В таких системах координат изменение расстояния между двумя точками (l), покоящимися в сопутствующей системе координат происходит по следующему закону Хаббла: он устанавливает зависимость между расстоянием до галактики D - и ее лучевой скоростью Vr, - определяемой с помощью эффекта Доплера: D=Vr/H, - где H - постоянная Хаббла. Ее значение известно лишь приближенно (60-80 км/с/Мпк).
В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой космологией. В этой модели описывается эволюция Вселенной начиная с момента 10-45 с после начала расширения.
Сторонники инфляционной модели видят соответствие между этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии
