- •Оглавление
- •Постановка задачи.
- •Формализация задачи.
- •Нахождение метода решения.
- •Проверка и корректировка модели.
- •Типичные классы задач исследования операций
- •Некоторые принципы принятия решений в ио
- •Многокритериальные задачи принятия решений в условиях определенности
- •Методика определения полезности для ситуации с качественными критериями
- •Принятие решений в условиях риска
- •Принятие решений в условиях неопределенности
- •Критерии Вальда, Лапласа, Гурвица, Сэвиджа в частном случае принятия решений в условиях неопределенности
- •Принятие решений в условиях конфликтных ситуаций или противодействия.
- •Развернутая форма игры
- •Нормальная форма игры
- •Ситуации равновесия
- •Игры с нулевой суммой. Антагонистические игры. Теорема о ситуациях равновесия.
- •Доказательство. Ситуация равновесна. Следовательно . Т.Е. Выбор любой другой стратегии первым игроком, при условии, что второй сохранит стратегию , приводит к худшему результату.
- •Нормальная форма
- •Смешанные стратегии. Максиминные и минимаксные стратегии игроков.
- •Теорема о минимаксе. Лемма 1 (об опорной гиперплоскости).
- •Поэтому
- •Теорема о минимаксе. Лемма 2.
- •Доказательство теоремы о минимаксе
- •Вычисление оптимальных стратегий (поиск решения в чистых стратегиях, доминирование стратегий, решение игр 22).
- •Решение антагонистических игр методами линейного программирования.
- •Решение методами линейного программирования матричных игр с ограничениями.
- •Решение параметрических задач линейного программирования.
- •Таким образом, можно утверждать, что если , (4)
- •Методы отсечения для решения задач дискретного программирования.
- •Первый алгоритм Гомори для решения полностью целочисленной задачи линейного программирования
- •Блок‑схема алгоритма
- •Второй алгоритм Гомори для решения частично целочисленной задачи линейного программирования
- •Третий алгоритм Гомори (полностью целочисленный)
- •Построение целочисленного правильного отсечения для 3-го алгоритма Гомори.
- •Построение начальной l-нормальной целочисленной симплексной таблицы
- •Построение целочисленного отсечения в третьем алгоритме Гомори
- •Выбор в третьем алгоритме Гомори
- •Метод потенциалов для решения транспортной задачи с ограничениями на пропускные способности
- •Решение задач нелинейного программирования с ограничениями равенствами. Метод множителей Лагранжа
- •Метод множителей Лагранжа
- •Условия Куна-Таккера для задачи выпуклого нелинейного программирования
- •Квадратичное программирование
- •Метод Франка и Вулфа для задачи квадратичного программирования
- •Исходная таблица метода Франка и Вулфа
- •Метод Баранкина и Дорфмана для задачи квадратичного программирования
- •Алгоритм
- •Исходная таблица метода Баранкина-Дорфмана
Постановка задачи.
Чрезвычайно ответственный этап операционного исследования. Первоначально задачу формулируют с точки зрения заказчика. Такая постановка никогда не бывает окончательной. Во время анализа исследуемой системы постановка всегда уточняется. На этом этапе роль операций состоит в тщательном исследование объекта, изучении множества факторов, влияющих на результаты исследования процесса.
Формализация задачи.
В самом общем случае математическая модель задачи имеет вид:
найти
при
,
,
где
– целевая функция (показатель качества
или эффективность системы).
x – вектор управляемых переменных;
y – вектор неуправляемых переменных;
gi – функция потребления i-го ресурса
bi – величина i-го ресурса
Нахождение метода решения.
Для нахождения оптимального решения х опт в зависимости от структуры целевой функции и ограничений применяют те или иные методы теории оптимальных решений:
Линейное программирование, если f и g – линейные функции.
Нелинейное программирование, если f и g – нелинейные функции.
Динамическое программирование, если f имеет специфическую структуру, т.е. является аддитивной или мультипликативной функцией от переменных х и у :
Геометрическое программирование, если целевая функция
,
а
Стохастическое программирование, когда у – случайная величина, а вместо функции f (х, y) рассматривается ее математическое ожидание Еу[f(х, y)]
Дискретное программирование, если на х и у наложено требование дискретности (например цело численности).
Эвристическое программирование применяют при решение тех задач, в которых точный оптимизм найти алгоритмическим путем невозможно из-за огромного числа вариантов.
Проверка и корректировка модели.
В сложных системах, к которым относятся и системы организационного типа, модель лишь частично отражает реальный процесс. Поэтому необходима проверка степени соответствия или адекватности модели и реального процесса. Проверку производят сравнением предсказанного поведения с фактическим поведением при изменении значений внешних неуправляемых воздействий.
5. Реализация найденного решения на практике – важнейший этап, завершающий операционное исследование.
Типичные классы задач исследования операций
По содержательной постановке наиболее часто возникают следующие типичные классы задач:
Задачи управления процессами. Они обладают следующей особенностью: с увеличением запасов увеличиваются расходы на их хранение, но уменьшаются потери из-за возможной их нехватки.
Задачи распределения ресурсов. Возникают, когда существует определенный набор работ, которые необходимо выполнить, а наличных ресурсов для выполнения работы должным образом не хватает.
Задачи ремонта и оборудования появляются в тех случаях, когда работающее оборудование изнашивается, устаревает и со временем подлежит замене.
Задачи массового обслуживания рассматривают вопросы образования и функционирования очередей, с которыми приходится сталкиваться в повседневной практике.
Задачи календарного планирования или составления расписания.
Задачи сетевого планирования и управления. Здесь рассматриваются соотношения между сроком окончания крупного комплекса операций и моментами начала всех операций комплекса. Они актуальны при разработке сложных и дорогостоящих проектов.
Задачи выбора маршрута или сетевые задачи. Чаще всего встречаются при исследовании разнообразных процессов на транспорте и в системах связи (компьютерные сети).
Часто задачи оказываются комбинированными.
