
- •1.Колебания. Диф. Ур. Колебаний : пружинный и физический маятник, колебательный контур. Решение уравнения. Фаза, период и частота колебаний.
- •2. Сложение колебаний одного направления. Биения
- •3.Сложение взаимно перпендикулярных колебаний. Эллиптическая, круговая и линейная поляризация результирующих колебаний. Фигуры Лиссажу.
- •4.Затухающие колебания. Уравнение, график. Логарифмический декремент и добротность колебательных систем.
- •5.Вынужденные колебания. Резонанс
- •6.Общая характеристика волновых процессов. Продольные и поперечные волны. Фазовая скорость. Уравнение волны. Принцип суперпозиции волн. Групповая скорость.
- •7.Интерференция волн. Стоячая волна. Эффект Доплера.
- •8.Волновое уравнение( с выводом на выбор – в струне, звук в трубе; электромагнитной волны – из уравнений Максвелла)
- •9.Свойства эмв(по шкале). Энергия эмв. Вектор Пойнтинга.
- •10. Интерферанция света. Опыт Юнга. Интенферанция света в тонких пленках. Кольнца Ньютона.
- •Интерференция света в тонких плёнках
- •Кольца Ньютона
- •11. Понятие о дифракции. Принцип Гюйгенса-Френеля. Метод зон френеля.
- •12. Дифракция Фраунгофера. Дифракция на пространственной (кристалической) решеткн. Формула Вульфа Брэггов. Понятие о голографии.
- •Математическоe описание
- •13. Взаимодеействие света с веществом (поглащение, рассеяние и дипрессия).
- •14. Поляризация света. Двойное лучеприломление. Закон Брюстера. Вращение плоскости поляризации.
- •15. Тепловое излучение и его характеристики. Законы Кирхгофа, Стефана-Больцмана и Вина. «Ультрафиолетовая катастрофа». Квантовая гипотеза и формула Планка.
- •16. Внешний фотоэффект и его законы. Корпускулярно-волновая двойственность свойств света. Масса и импульс фотона. Давление света.
- •17. Эффект Комптона.
- •18. Корпуксолярно-волновая двойственность свойств частиц вещества. Волны де Бройля. Волновая функция, ее свойства и статический смысл.
- •Волны де бройля
- •Волновая функция
- •19. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера. Движение свободной частицы. Движение частицы в одномерной потенциальной яме.
- •20. Прохождение частицы через потенциальный барьер. Туннельный эффект.
- •21. Квантовый гармонический асцилятор.
- •23. Постулаты Бора. Опыты Франка и Герца. Спектр атома водорода по Бору.
- •24. Атом водорода в квантовой механике. Квантовые числа как результат решения уравнения Шредингера. Правила отбора.
- •25.Принцип Паули. Периодическая таблица элементов д.И. Менделеева. Химические связи и энергетические уровни в молекулах, строение молекул.
- •26.Отрицательное поглощение света. Лазеры.
- •27. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния идеального газа. Основные газовые законы.
- •28. Функция распределения молекул по модулю скорости. Распределение Максвелла и его экспериментальное подтверждение. Средние скорости молекул.
- •29. Идеальный газ в поле тяготения. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле и его экспериментальное подтверждение.
- •30. Длина свободного пробега молекул. Броуновское движение.
- •31 Краткая характеристика явлений переноса: диффузия, вязкость, теплопроводность.
- •32 Внутренняя энергия системы. Внутренняя энергия идеального газа. Теплопередача и количество теплоты. Теплоемкость. Работа в термодинамике. Первое начало термодинамики.
- •33 Применение первого начала термодинамики к анализу изопроцессов в идеальном газе. Адиабатический процесс.
- •35 Второе начало термодинамики, его различные формулировки.
- •36 *Тепловые и холодильные машины, схема их устройства. Цикл Карно, теоремы Карно.
- •37 Реальные газы. Уравнение Ван-Дер-Ваальса. Изотермы реальных газов.
- •38 *Строение кристаллических тел, их разновидности и свойства
- •39 Строение жидкостей. *Поверхностное натяжение. *Капиллярные явления
- •40. Понятие о зонной теории твердых тел. Металлы, полупроводники и диэлектрики.
- •41 Модели строения и основные свойства ядер
- •42. Энергия связи, дефект массы. Ядерные силы. Масс-спектрометры и определение масс ядер.
- •43. Явление радиоктивности. Альфа- и бета-распад. Ядерные реакции деления и синтеза. Классификация элементарных частиц. Кварковая гипотеза
- •44.Фундаментальные взаимодействия. Основные положения современной физической картины мира.
9.Свойства эмв(по шкале). Энергия эмв. Вектор Пойнтинга.
Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.
Свойства: 1. Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн. 2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме. 3. Электромагнитная волна является поперечной.
4. Скорость электромагнитных волн в вакууме с=300000 км/с. Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны. 5. При переходе из одной среды в другую частота волны не изменяется. 6. Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.
7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).
Для электромагнитных волн, так же, как и для механических, справедливы свойства дифракции, интерференции, поляризации и другие.
Возможность обнаружения электромагнитных воли указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл (см. (95.8)) и wм, (см. (130.3)) электрического и магнитного полей:
Учитывая выражение (162.4), получим, что плотности энергии электрического и магнитного полей в каждый момент времени одинаковы, т. е. wэл = wм. Поэтому
Умножив плотность энергии w на скорость v распространения волны в среде (см. (162.3)), получим модуль плотности потока энергии:
Tax как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора [ЕН] совпадает с направлением переноса энергии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнитной энергии называется вектором Умова — Пойнтинга:
Вектор S направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.
Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Г. Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление электромагнитных волн объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля волны действию сил Лоренца. Однако значение этого давления ничтожно мало. Можно оценить, что при средней мощности солнечного излучения, приходящего на Землю, давление для абсолютно поглощающей поверхности составляет примерно 5 мкПа. В исключительно тонких экспериментах, ставших классическими, П. Н. Лебедев в 1899 г. доказал существование светового давления на твердые тела, а в 1910 г. — на газы. Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой электромагнитные волны.
Существование давления электромагнитных воли приводит к выводу о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля
где W — энергия электромагнитного поля. Выражая импульс как р=тс (поле в вакууме распространяется со скоростью с), получим р=тс= W/c, откуда
(163.1)
Это соотношение между массой и энергией электромагнитного поля является универсальным законом природы. Согласно специальной теории относительности, выражение (163.1) имеет общее значение и справедливо для любых тел независимо от их внутреннего строения.
Таким образом, рассмотренные свойства электромагнитных волн, определяемые теорией Максвелла, полностью подтверждаются опытами Герца, Лебедева и выводами специальной теории относительности, сыгравшими решающую роль для подтверждения и быстрого признания этой теории.