Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по физике.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.19 Mб
Скачать

5.Вынужденные колебания. Резонанс

Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Дифф.ур: где  — произвольные постоянные, которые определяются из начальных условий.

Найдём частное решение. Для этого подставим в уравнение решение вида: и получим значение для константы:

Тогда окончательное решение запишется в виде:

Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность

Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

,

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника.

6.Общая характеристика волновых процессов. Продольные и поперечные волны. Фазовая скорость. Уравнение волны. Принцип суперпозиции волн. Групповая скорость.

Процесс распространения колебаний в пространстве называется волновым процессом или просто волной. Волны различной природы (звуковые, упругие, электромагнитные) описываются сходными дифференциальными уравнениями в частных производных второго порядка по пространственно-временным переменным. Уравнение, описывающее волновой процесс, называется волновым уравнением, функция, которая удовлетворяет этому уравнению – волновой функцией.

Волны бывают скалярные (давление в звуковой волне, плотность заряда в плазме) и векторные (упругие волны в кристаллах, электромагнитные волны). Если направление колебаний в волне совпадает с направлением ее распространения, то такая волна называется продольной; если колебания происходят в направлениях, перпендикулярных направлению распространения волны – поперечной. Направление колебаний определяет поляризацию волны.

Скорость распространения волны , входящая в волновое уравнение, есть скорость перемещения в пространстве фиксированного значения фазы волны, в связи с чем ее называют фазовой скоростью. Эту скорость легко определить, взяв дифференциал от произвольного постоянного значения фазы ωt – kx+ α = const. После чего находим:

Угловая частота ω связана с периодом волны Т:

.

Волновое число k связано с длиной волны λ:

.

Используя эти соотношения, можем cвязать фазовую скорость волны с ее длиной λ и периодом Т:

Отсюда следует, что длина волны – это расстояние между ближайшими точками, колеблющимися в одинаковой фазе

Уравнение волны: .Оно позволяет найти смещение х от положения равновесия любой точки (находящейся на любом расстоянии r) в любой момент времени

Пpинцип супеpпозиции волн гласит, что волны от pазличных источников не взаимодействуют дpуг с дpугом и что сложное волновое поле от двух или большего числа источников находится путем геометpического сложения волн от отдельных источников, т.е.

Групповая скорость — это величина, характеризующая скорость распространения «группы волн» - то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким спектром). рупповая скорость определяется динамикой физической системы, в которой распространяется волна (конкретной среды, конкретного поля итп). В большинстве случаев подразумевается линейность этой системы (точно или приближенно).

Для одномерных волн групповая скорость вычисляется из закона дисперсии:

,

где  — угловая частота,  — волновое число. Групповая скорость волн в пространстве (например, трехмерном или двумерном) определяется градиентом частоты по волновому вектору :