- •1.Колебания. Диф. Ур. Колебаний : пружинный и физический маятник, колебательный контур. Решение уравнения. Фаза, период и частота колебаний.
- •2. Сложение колебаний одного направления. Биения
- •3.Сложение взаимно перпендикулярных колебаний. Эллиптическая, круговая и линейная поляризация результирующих колебаний. Фигуры Лиссажу.
- •4.Затухающие колебания. Уравнение, график. Логарифмический декремент и добротность колебательных систем.
- •5.Вынужденные колебания. Резонанс
- •6.Общая характеристика волновых процессов. Продольные и поперечные волны. Фазовая скорость. Уравнение волны. Принцип суперпозиции волн. Групповая скорость.
- •7.Интерференция волн. Стоячая волна. Эффект Доплера.
- •8.Волновое уравнение( с выводом на выбор – в струне, звук в трубе; электромагнитной волны – из уравнений Максвелла)
- •9.Свойства эмв(по шкале). Энергия эмв. Вектор Пойнтинга.
- •10. Интерферанция света. Опыт Юнга. Интенферанция света в тонких пленках. Кольнца Ньютона.
- •Интерференция света в тонких плёнках
- •Кольца Ньютона
- •11. Понятие о дифракции. Принцип Гюйгенса-Френеля. Метод зон френеля.
- •12. Дифракция Фраунгофера. Дифракция на пространственной (кристалической) решеткн. Формула Вульфа Брэггов. Понятие о голографии.
- •Математическоe описание
- •13. Взаимодеействие света с веществом (поглащение, рассеяние и дипрессия).
- •14. Поляризация света. Двойное лучеприломление. Закон Брюстера. Вращение плоскости поляризации.
- •15. Тепловое излучение и его характеристики. Законы Кирхгофа, Стефана-Больцмана и Вина. «Ультрафиолетовая катастрофа». Квантовая гипотеза и формула Планка.
- •16. Внешний фотоэффект и его законы. Корпускулярно-волновая двойственность свойств света. Масса и импульс фотона. Давление света.
- •17. Эффект Комптона.
- •18. Корпуксолярно-волновая двойственность свойств частиц вещества. Волны де Бройля. Волновая функция, ее свойства и статический смысл.
- •Волны де бройля
- •Волновая функция
- •19. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера. Движение свободной частицы. Движение частицы в одномерной потенциальной яме.
- •20. Прохождение частицы через потенциальный барьер. Туннельный эффект.
- •21. Квантовый гармонический асцилятор.
- •23. Постулаты Бора. Опыты Франка и Герца. Спектр атома водорода по Бору.
- •24. Атом водорода в квантовой механике. Квантовые числа как результат решения уравнения Шредингера. Правила отбора.
- •25.Принцип Паули. Периодическая таблица элементов д.И. Менделеева. Химические связи и энергетические уровни в молекулах, строение молекул.
- •26.Отрицательное поглощение света. Лазеры.
- •27. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния идеального газа. Основные газовые законы.
- •28. Функция распределения молекул по модулю скорости. Распределение Максвелла и его экспериментальное подтверждение. Средние скорости молекул.
- •29. Идеальный газ в поле тяготения. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле и его экспериментальное подтверждение.
- •30. Длина свободного пробега молекул. Броуновское движение.
- •31 Краткая характеристика явлений переноса: диффузия, вязкость, теплопроводность.
- •32 Внутренняя энергия системы. Внутренняя энергия идеального газа. Теплопередача и количество теплоты. Теплоемкость. Работа в термодинамике. Первое начало термодинамики.
- •33 Применение первого начала термодинамики к анализу изопроцессов в идеальном газе. Адиабатический процесс.
- •35 Второе начало термодинамики, его различные формулировки.
- •36 *Тепловые и холодильные машины, схема их устройства. Цикл Карно, теоремы Карно.
- •37 Реальные газы. Уравнение Ван-Дер-Ваальса. Изотермы реальных газов.
- •38 *Строение кристаллических тел, их разновидности и свойства
- •39 Строение жидкостей. *Поверхностное натяжение. *Капиллярные явления
- •40. Понятие о зонной теории твердых тел. Металлы, полупроводники и диэлектрики.
- •41 Модели строения и основные свойства ядер
- •42. Энергия связи, дефект массы. Ядерные силы. Масс-спектрометры и определение масс ядер.
- •43. Явление радиоктивности. Альфа- и бета-распад. Ядерные реакции деления и синтеза. Классификация элементарных частиц. Кварковая гипотеза
- •44.Фундаментальные взаимодействия. Основные положения современной физической картины мира.
26.Отрицательное поглощение света. Лазеры.
Отрицательное
поглощение света: При рассмотрении
поглощения света. с квантовой точки
зрения вводится такая характеристика
энергетич. уровней, как населённость
уровня Nn,m - число атомов,
находящихся в данном энергетич. состоянии.
В этом случае выражение для
может быть представлено в виде
где
разность населённостей уровней п
и т
Nm
- (gm/gn)Nn
(здесь gm и gn
- статистич. веса заселённости уровней).
Зависимость
от разности частот
-
наз. контуром линии поглощения. В
рассмотренном классич. приближении
ширина линии поглощения на уровне 0,5 от
максимума
Это т. н. естеств. ширина линии. В реальных
средах имеется ряд причин, увеличивающих
ширину линии поглощения, иногда во много
раз. Гл. причиной уширения линии поглощения
в газах служит эффект Доплера, возникающий
вследствие беспорядочного движения
При спец. условиях возбуждения возможна
т. н. инверсная населённость, когда
т. е. когда населённость верхнего уровня
больше населённости нижнего. В этом
случае, как видно из (2), меняет знак и
показатель поглощения
- среда характеризуется т. н. отрицательным
поглощением. Свет, проходящий через
такую среду, не ослабляется, а, наоборот,
усиливается. Среды, в к-рых возможно
создание (тем или иным способом) инверсной
населённости уровней, используются для
создания лазеров и усилителей света.
Ла́зер — (усиление света посредством вынужденного излучения), опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу. Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы
Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза.
