
- •Вопрос 1. Основные свойства функций.
- •Вопрос 2. Бесконечно малая величина
- •Вопрос 3(свойства бесконечно малых последовательностей)
- •Вопрос 4. Определение предела последовательности). Число a называется пределом последовательности xn, если
- •Вопрос 6.
- •Вопрос 9-10. Теоремы о пределах суммы, произведения, частного двух функций. Первый и второй замечательные пределы. Примеры вычисления.
- •18.Класификация точек разрыва ф-ции.
- •19. Производная. Геометрический смысл производной.
- •Вопрос 21. Производные основных элементарных функций.
- •26. Производная обратной функции. Производные обратных тригонометрических функций.
- •27. Производная параметрически заданной функции.
- •28. Дифференциал функции. Геометрический смысл дифференциала.
- •29. Производные высших порядков.
- •Вопрос 30.
- •Вопрос 31.
- •Вопрос 32.
- •Вопрос 33.
- •Вопрос 34.Асимптоты функций. Нахождение вертикальны, наклонных и горизонт асимптот функций.
- •36. Определители и их основные св-ва.
- •37. Разложение определителя по элементам строки (столбца).
- •38. Правило Крамера.
- •39. Линейные операции над векторами и их запись.
- •40. Скалярное произведение векторови его св-ва
- •43. Векторное произведение в координатах.
- •42. Векторное произведение векторов и его св-ва.
- •41. Скалярное произведение в координатах
- •44. Смешанное произведение векторов и его св-ва
- •49. Угол между двумя прямыми на плоскости.
- •Вопрос50 Уравнение плоскости, проходящей через три заданные точки
- •51. Общее уравнение плоскости и его исследование.
- •52. Угол между двумя плоскостями
- •56. Угол между двумя прямыми в пространстве
Вопрос 1. Основные свойства функций.
1) Область определения функции и область значений функции.
Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y, которые принимает функция.
В элементарной математике изучаются функции только на множестве действительных чисел.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знаков постоянства функции.
Промежутки знаков постоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодичность функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).
Вопрос 2. Бесконечно малая величина
Последовательность
an
называется бесконечно малой, если
.
Например, последовательность чисел
—
бесконечно малая.
Функция
называется бесконечно малой в окрестности
точки x0,
если
.
Функция
называется бесконечно малой на
бесконечности, если
либо
.
Также
бесконечно малой является функция,
представляющая собой разность функции
и её предела, то есть если
,
то f(x)
− a
= α(x),
.
Бесконечно большая величина
Во
всех приведённых ниже формулах
бесконечность справа от равенства
подразумевается определённого знака
(либо «плюс», либо «минус»). То есть,
например, функция xsinx,
неограниченная с обеих сторон, не
является бесконечно большой при
.
Последовательность
an
называется бесконечно большой, если
.
Функция
называется бесконечно большой в
окрестности точки x0,
если
.
Функция
называется бесконечно большой на
бесконечности, если
либо
Лемма 1. Если n — бесконечно малая последовательность, то 1/ n —бесконечно большая последовательность.
Пример 23. Пусть n = 1/n, которая является бесконечно малой, тогда последовательность n = 1/ n = n будет бесконечно большой.